Description
Feature Type
-
Adding new functionality to pandas
-
Changing existing functionality in pandas
-
Removing existing functionality in pandas
Problem Description
we basically come up issue about not knowing the case of the column, we can print and view it but to make life little more easier I got magic_case created.
we have to pass the DataFrame and the column name we know (ignoring case) and we can have this assigned to a variable
mc=magic_case(df_2,'jack')
print(mc) # JaCK
and if there are multiple names with difference in case then it throws a value error with list of names
ValueError: Multiple columns with the same name but different cases found: ['JaCK', 'JACk']
Feature Description
def magic_case(df, column_name, new_name=None, inplace=False):
"""
Find the exact case-sensitive column name in a DataFrame and optionally rename it.
Parameters:
-----------
df : pandas.DataFrame
The DataFrame to search in
column_name : str
The case-insensitive column name to search for
new_name : str, optional
If provided, the column will be renamed to this value
inplace : bool, default False
If True and new_name is provided, modifies the DataFrame in-place and returns None.
If False and new_name is provided, returns a copy of the DataFrame with renamed column.
If new_name is None, this parameter has no effect.
Returns:
--------
str or pandas.DataFrame or None
- If new_name is None: returns the exact case-sensitive column name
- If new_name is provided and inplace=False: returns the DataFrame with renamed column
- If new_name is provided and inplace=True: returns None
Raises:
-------
ValueError
If no matching column is found or if multiple matches are found
"""
# Check if the dataframe is empty or has no columns
if df.empty or len(df.columns) == 0:
raise ValueError("DataFrame is empty or has no columns")
# Strip whitespace from column names for comparison
clean_columns = {col.lower().strip(): col for col in df.columns}
# Clean and lowercase the search term
search_term = column_name.lower().strip()
# Check if the lowercase version of the input exists
if search_term not in clean_columns:
matches = []
# Check for partial matches (e.g., "jack" might match "jackson")
for col_lower, col_original in clean_columns.items():
if search_term in col_lower or col_lower in search_term:
matches.append(col_original)
if matches:
original_column_name = matches[0] # Get the first partial match
else:
raise ValueError(f"No column matching '{column_name}' was found in the DataFrame")
else:
# Check for multiple exact matches with the same spelling but different cases
exact_matches = [col for col in df.columns if col.lower().strip() == search_term]
if len(exact_matches) > 1:
raise ValueError(f"Multiple columns with the same name but different cases found: {exact_matches}")
# Get the exact case-sensitive column name
original_column_name = clean_columns[search_term]
# If new_name is not provided, just return the original column name
if new_name is None:
return original_column_name
# If new_name is provided, rename the column
if inplace:
df.rename(columns={original_column_name: new_name}, inplace=True)
return None
else:
return df.rename(columns={original_column_name: new_name})
Alternative Solutions
nothing
Additional Context
if you had anything to say - please drop mail to akvamsikrishna@outlook.com with sub: magic_case() 😅 just to identify easily and prioritize your response over others.