Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

BUG: Index.drop_duplicates() is inconsistent for unhashable values #60925

Copy link
Copy link
Open
@camriddell

Description

@camriddell
Issue body actions

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

## example A
import pandas as pd # 2.2.3
df = pd.DataFrame([[1, 2, 3]], columns=['a', ['b', 'c'], ['b', 'c']])

print(df.columns.drop_duplicates())
# Traceback (most recent call last):
#   File "/home/cameron/.vim-excerpt", line 5, in <module>
#     print(df.columns.drop_duplicates())
#           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#   File "/home/cameron/repos/opensource/narwhals-dev/.venv/lib/python3.12/site-packages/pandas/core/indexes/base.py", line 3117, in drop_duplicates
#     if self.is_unique:
#        ^^^^^^^^^^^^^^
#   File "properties.pyx", line 36, in pandas._libs.properties.CachedProperty.__get__
#   File "/home/cameron/repos/opensource/narwhals-dev/.venv/lib/python3.12/site-packages/pandas/core/indexes/base.py", line 2346, in is_unique
#     return self._engine.is_unique
#            ^^^^^^^^^^^^^^^^^^^^^^
#   File "index.pyx", line 266, in pandas._libs.index.IndexEngine.is_unique.__get__
#   File "index.pyx", line 271, in pandas._libs.index.IndexEngine._do_unique_check
#   File "index.pyx", line 333, in pandas._libs.index.IndexEngine._ensure_mapping_populated
#   File "pandas/_libs/hashtable_class_helper.pxi", line 7115, in pandas._libs.hashtable.PyObjectHashTable.map_locations
# TypeError: unhashable type: 'list'


## --------
## example B
import pandas as pd # 2.2.3
df = pd.DataFrame([[1, 2, 3]], columns=['a', ['b', 'c'], ['b', 'c']])

# hasattr triggers a side effect where the `df.columns.drop_duplicates()` now works.
hasattr(df, 'hello_world')
print(df.columns.drop_duplicates())
# Index(['a', ['b', 'c']], dtype='object')

Issue Description

pandas.Index.drop_duplicates() inconsistently raises TypeError: unhashable type: 'list' when its values encompass a list. This error does not seem to prevent the underlying uniqueness computation from happening. In addition to the submitted reproducible example there is a direct causation here in the Index object:

If we call .drop_duplicates when the Index contains unhashable types, we observe a TypeError.

import pandas as pd

idx = pd.Index(['a', ['b', 'c'], ['b', 'c']])
idx.drop_duplicates() # TypeError: unhashable type: 'list'

But for some reason if we simply ignore the error the first time and try .drop_duplicates() again it works and removes the duplicated entities including the unhashable ones?

import pandas as pd

idx = pd.Index(['a', ['b', 'c'], ['b', 'c']])
try:
    idx.drop_duplicates()    # TypeError: unhashable type: 'list'
except TypeError:
    pass
print(idx.drop_duplicates()) # Index(['a', ['b', 'c']], dtype='object')

Where we can see that the underlying Index implementation populates its hashtable mapping even though the original call to drop_duplicates fails. We know this population is successful because the second attempt at .drop_duplicates works.

import pandas as pd

idx = pd.Index(['a', ['b', 'c'], ['b', 'c']])
print(idx._engine.mapping)   # None
try:
    idx.drop_duplicates()    # TypeError: unhashable type: 'list'
except TypeError:
    pass
print(idx._engine.mapping)   # <pandas._libs.hashtable.PyObjectHashTable>
print(idx.drop_duplicates()) # Index(['a', ['b', 'c']], dtype='object')

Finally, it appears that attribute checking on a pandas.DataFrame causes the PyObjectHashTable to be constructed for the column index. This is likely due to the shared code path between __getattr__ and __getitem__.

import pandas as pd

df = pd.DataFrame([[1, 2, 3]], columns=['a', ['b', 'c'], ['b', 'c']])
print(df.columns._engine.mapping)   # None
hasattr(df, 'hello_world')
print(df.columns._engine.mapping)   # <pandas._libs.hashtable.PyObjectHashTable>
print(df.columns.drop_duplicates()) # Index(['a', ['b', 'c']], dtype='object')

Expected Behavior

I expect that Index.drop_duplicates() should work regardless of whether an attribute has been checked or not. The following two snippets should produce equivalent results (whether that is to raise an error or to produce a result):

import pandas as pd # 2.2.3
df = pd.DataFrame([[1, 2, 3]], columns=['a', ['b', 'c'], ['b', 'c']])

print(df.columns.drop_duplicates()) # Currently produces → TypeError
import pandas as pd # 2.2.3
df = pd.DataFrame([[1, 2, 3]], columns=['a', ['b', 'c'], ['b', 'c']])

hasattr(df, 'hello_world')
print(df.columns.drop_duplicates()) # Currently produces → Index(['a', ['b', 'c']], dtype='object')

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.12.7
python-bits : 64
OS : Linux
OS-release : 6.6.52-1-lts
Version : #1 SMP PREEMPT_DYNAMIC Wed, 18 Sep 2024 19:02:04 +0000
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.2.3
numpy : 2.2.2
pytz : 2025.1
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2025.2.0
html5lib : None
hypothesis : 6.125.3
gcsfs : None
jinja2 : 3.1.5
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 19.0.0
pyreadstat : None
pytest : 8.3.4
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.1
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugError ReportingIncorrect or improved errors from pandasIncorrect or improved errors from pandas

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      Morty Proxy This is a proxified and sanitized view of the page, visit original site.