Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

BUG: many dataframe operations broken when a column contains numpy structured array #60108

Copy link
Copy link
Open
@digitalsignalperson

Description

@digitalsignalperson
Issue body actions

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import numpy as np
import pandas as pd

N = 10
hash_dtype = np.dtype([(f'h{i}', np.uint64) for i in range(4)])
hashes = np.zeros(N, dtype=hash_dtype)

df = pd.DataFrame(data={'hashes':hashes, 'other_stuff':np.zeros(N)})
idx = [0, 1]

## This fails
df.loc[idx, 'hashes'] = np.ones(len(idx), dtype=hash_dtype)
# LossySetitemError: 
# During handling of the above exception, another exception occurred:
# AssertionError
# AssertionError: Something has gone wrong, please report a bug at https://github.com/pandas-dev/pandas/issues

## This also files
print(df)
# TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

## This is ok
print(df['other_stuff'])

## This is a partial workaround
df['hashes'] = np.zeros(len(df), dtype=hash_dtype) # same errors with or without this line
df['hashes'].values[idx] = np.ones(len(idx), dtype=hash_dtype)

## But things still broken
print(df['hashes'])
# TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

## This works
print(df.loc[0, 'hashes'])

## This doesn't
print(df.loc[:, 'hashes'])
# TypeError: ufunc 'isnan' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''

## OK
x = df['hashes']

## Not OK
x = df[['hashes', 'other_stuff']]
# TypeError: void() takes at least 1 positional argument (0 given)

Issue Description

Working with a numpy array with a structured type consisting of four 64 bit integers, there are various errors when getting/setting the associated data in a dataframe.

  • Trying to set values with df.loc[idx, 'hashes'] = get LossySetitemError, AssertionError: Something has gone wrong
  • can work-around by directly indexing into the underlying array df['hashes'].values[idx] = (but for other indexes would have to do something like df['hashes'].values[df.index.isin(idx)] = or use df.index.get_indexer)
  • printing/string reps broken, e.g. print(df) and print(df['hashes'])
  • trying to access df[['hashes', 'other_stuff']] TypeError: void() takes at least 1 positional argument (0 given)

Expected Behavior

can set values with .loc without assertion error
can print dataframe without exception

Installed Versions

INSTALLED VERSIONS

commit : 0691c5c
python : 3.12.7
python-bits : 64
OS : Linux
OS-release : 6.6.57-1-lts
Version : #1 SMP PREEMPT_DYNAMIC Thu, 17 Oct 2024 13:57:25 +0000
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.2.3
numpy : 2.1.2
pytz : 2024.2
dateutil : 2.9.0.post0
pip : 24.2
Cython : 3.0.11
sphinx : None
IPython : 8.28.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : 5.3.0
matplotlib : 3.9.2
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.5
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.14.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : 2.0.1
xlsxwriter : 3.1.9
zstandard : 0.22.0
tzdata : 2024.2
qtpy : 2.4.1
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugConstructorsSeries/DataFrame/Index/pd.array ConstructorsSeries/DataFrame/Index/pd.array ConstructorsError ReportingIncorrect or improved errors from pandasIncorrect or improved errors from pandas

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      Morty Proxy This is a proxified and sanitized view of the page, visit original site.