Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

BUG: Can't change datetime precision in columns/rows #57838

Copy link
Copy link
Open
@erezinman

Description

@erezinman
Issue body actions

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd

# ONLY WORKING CONVERSION:
df = pd.DataFrame({'time': pd.to_datetime(['2021-01-01 12:00:00', '2021-01-01 12:00:01', '2021-01-01 12:00:02']), 'value': [1, 2, 3]})
df['time'] = df['time'].astype('M8[us]') 
print(df.dtypes)
# time     datetime64[us]
# value             int64
# dtype: object

# NON-WORKING CONVERSIONS

df = pd.DataFrame({'time': pd.to_datetime(['2021-01-01 12:00:00', '2021-01-01 12:00:01', '2021-01-01 12:00:02']),
                           'value': [1, 2, 3]})
df.iloc[:, 0] = df.iloc[:, 0].astype('M8[us]') 
print(df.dtypes)
# time     datetime64[ns]
# value             int64
# dtype: object


df = pd.DataFrame({'time': pd.to_datetime(['2021-01-01 12:00:00', '2021-01-01 12:00:01', '2021-01-01 12:00:02']),
                           'value': [1, 2, 3]})
df.loc[:, ['time']] = df.loc[:, ['time']].astype('M8[us]') 
print(df.dtypes)
# time     datetime64[ns]
# value             int64
# dtype: object

df = pd.DataFrame({'time': pd.to_datetime(['2021-01-01 12:00:00', '2021-01-01 12:00:01', '2021-01-01 12:00:02']),
                           'value': [1, 2, 3]})
idxs = [0]
axis = 1
df.iloc(axis=axis)[idxs] = df.iloc(axis=axis)[idxs].astype('M8[us]')
print(df.dtypes)
# time     datetime64[ns]
# value             int64
# dtype: object

Issue Description

Conversion of columns (/rows) between datetime dtypes with different precision does not change the datatype of the columns (except for in the simplest case).

The absurd is that if I were to change the dtype of the "value" column in the above example, all of these example would've worked.

Expected Behavior

All printouts should be the same as the first:

time     datetime64[us]
value             int64
dtype: object

Installed Versions

INSTALLED VERSIONS

commit : bdc79c1
python : 3.9.18.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-91-generic
Version : #101~20.04.1-Ubuntu SMP Thu Nov 16 14:22:28 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_IL
LOCALE : en_IL.UTF-8
pandas : 2.2.1
numpy : 1.24.4
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.2.2
pip : 23.3
Cython : 3.0.6
pytest : 7.4.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : 2.8.6
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      Morty Proxy This is a proxified and sanitized view of the page, visit original site.