Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit adec21f

Browse filesBrowse files
authored
TYP: Add ignores for numpy 2.2 updates (#61265)
* TYP: Add ignores for numpy 2.2 updates * fix tests and plotting * ignore pyright error
1 parent 4b8c472 commit adec21f
Copy full SHA for adec21f

28 files changed

+43
-63
lines changed

‎pandas/core/algorithms.py

Copy file name to clipboardExpand all lines: pandas/core/algorithms.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -215,7 +215,7 @@ def _reconstruct_data(
215215
values = cls._from_sequence(values, dtype=dtype) # type: ignore[assignment]
216216

217217
else:
218-
values = values.astype(dtype, copy=False)
218+
values = values.astype(dtype, copy=False) # type: ignore[assignment]
219219

220220
return values
221221

‎pandas/core/array_algos/quantile.py

Copy file name to clipboardExpand all lines: pandas/core/array_algos/quantile.py
+2-2
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ def quantile_with_mask(
102102
interpolation=interpolation,
103103
)
104104

105-
result = np.asarray(result)
105+
result = np.asarray(result) # type: ignore[assignment]
106106
result = result.T
107107

108108
return result
@@ -196,7 +196,7 @@ def _nanquantile(
196196
# Caller is responsible for ensuring mask shape match
197197
assert mask.shape == values.shape
198198
result = [
199-
_nanquantile_1d(val, m, qs, na_value, interpolation=interpolation)
199+
_nanquantile_1d(val, m, qs, na_value, interpolation=interpolation) # type: ignore[arg-type]
200200
for (val, m) in zip(list(values), list(mask))
201201
]
202202
if values.dtype.kind == "f":

‎pandas/core/arrays/_mixins.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/_mixins.py
+1-7
Original file line numberDiff line numberDiff line change
@@ -142,18 +142,12 @@ def view(self, dtype: Dtype | None = None) -> ArrayLike:
142142

143143
dt64_values = arr.view(dtype)
144144
return DatetimeArray._simple_new(dt64_values, dtype=dtype)
145-
146145
elif lib.is_np_dtype(dtype, "m") and is_supported_dtype(dtype):
147146
from pandas.core.arrays import TimedeltaArray
148147

149148
td64_values = arr.view(dtype)
150149
return TimedeltaArray._simple_new(td64_values, dtype=dtype)
151-
152-
# error: Argument "dtype" to "view" of "_ArrayOrScalarCommon" has incompatible
153-
# type "Union[ExtensionDtype, dtype[Any]]"; expected "Union[dtype[Any], None,
154-
# type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, Union[int,
155-
# Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]"
156-
return arr.view(dtype=dtype) # type: ignore[arg-type]
150+
return arr.view(dtype=dtype)
157151

158152
def take(
159153
self,

‎pandas/core/arrays/arrow/_arrow_utils.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/arrow/_arrow_utils.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ def pyarrow_array_to_numpy_and_mask(
4444
mask = pyarrow.BooleanArray.from_buffers(
4545
pyarrow.bool_(), len(arr), [None, bitmask], offset=arr.offset
4646
)
47-
mask = np.asarray(mask)
47+
mask = np.asarray(mask) # type: ignore[assignment]
4848
else:
4949
mask = np.ones(len(arr), dtype=bool)
5050
return data, mask

‎pandas/core/arrays/arrow/array.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/arrow/array.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -2540,7 +2540,7 @@ def _str_get_dummies(self, sep: str = "|", dtype: NpDtype | None = None):
25402540
dummies_dtype = np.bool_
25412541
dummies = np.zeros(n_rows * n_cols, dtype=dummies_dtype)
25422542
dummies[indices] = True
2543-
dummies = dummies.reshape((n_rows, n_cols))
2543+
dummies = dummies.reshape((n_rows, n_cols)) # type: ignore[assignment]
25442544
result = type(self)(pa.array(list(dummies)))
25452545
return result, uniques_sorted.to_pylist()
25462546

‎pandas/core/arrays/base.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/base.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -596,7 +596,7 @@ def to_numpy(
596596
if copy or na_value is not lib.no_default:
597597
result = result.copy()
598598
if na_value is not lib.no_default:
599-
result[self.isna()] = na_value
599+
result[self.isna()] = na_value # type: ignore[index]
600600
return result
601601

602602
# ------------------------------------------------------------------------

‎pandas/core/arrays/categorical.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/categorical.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -1853,7 +1853,7 @@ def value_counts(self, dropna: bool = True) -> Series:
18531853
count = np.bincount(obs, minlength=ncat or 0)
18541854
else:
18551855
count = np.bincount(np.where(mask, code, ncat))
1856-
ix = np.append(ix, -1)
1856+
ix = np.append(ix, -1) # type: ignore[assignment]
18571857

18581858
ix = coerce_indexer_dtype(ix, self.dtype.categories)
18591859
ix_categorical = self._from_backing_data(ix)

‎pandas/core/arrays/datetimelike.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/datetimelike.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -2394,7 +2394,7 @@ def take(
23942394
)
23952395

23962396
indices = np.asarray(indices, dtype=np.intp)
2397-
maybe_slice = lib.maybe_indices_to_slice(indices, len(self))
2397+
maybe_slice = lib.maybe_indices_to_slice(indices, len(self)) # type: ignore[arg-type]
23982398

23992399
if isinstance(maybe_slice, slice):
24002400
freq = self._get_getitem_freq(maybe_slice)

‎pandas/core/arrays/datetimes.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/datetimes.py
+3-6
Original file line numberDiff line numberDiff line change
@@ -331,7 +331,7 @@ def _simple_new( # type: ignore[override]
331331
else:
332332
# DatetimeTZDtype. If we have e.g. DatetimeTZDtype[us, UTC],
333333
# then values.dtype should be M8[us].
334-
assert dtype._creso == get_unit_from_dtype(values.dtype)
334+
assert dtype._creso == get_unit_from_dtype(values.dtype) # type: ignore[union-attr]
335335

336336
result = super()._simple_new(values, dtype)
337337
result._freq = freq
@@ -542,7 +542,7 @@ def _unbox_scalar(self, value) -> np.datetime64:
542542
raise ValueError("'value' should be a Timestamp.")
543543
self._check_compatible_with(value)
544544
if value is NaT:
545-
return np.datetime64(value._value, self.unit)
545+
return np.datetime64(value._value, self.unit) # type: ignore[call-overload]
546546
else:
547547
return value.as_unit(self.unit, round_ok=False).asm8
548548

@@ -813,10 +813,7 @@ def _add_offset(self, offset: BaseOffset) -> Self:
813813
try:
814814
res_values = offset._apply_array(values._ndarray)
815815
if res_values.dtype.kind == "i":
816-
# error: Argument 1 to "view" of "ndarray" has incompatible type
817-
# "dtype[datetime64] | DatetimeTZDtype"; expected
818-
# "dtype[Any] | type[Any] | _SupportsDType[dtype[Any]]"
819-
res_values = res_values.view(values.dtype) # type: ignore[arg-type]
816+
res_values = res_values.view(values.dtype)
820817
except NotImplementedError:
821818
if get_option("performance_warnings"):
822819
warnings.warn(

‎pandas/core/arrays/masked.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/masked.py
+3-3
Original file line numberDiff line numberDiff line change
@@ -515,7 +515,7 @@ def tolist(self) -> list:
515515
if self.ndim > 1:
516516
return [x.tolist() for x in self]
517517
dtype = None if self._hasna else self._data.dtype
518-
return self.to_numpy(dtype=dtype, na_value=libmissing.NA).tolist()
518+
return self.to_numpy(dtype=dtype, na_value=libmissing.NA).tolist() # type: ignore[return-value]
519519

520520
@overload
521521
def astype(self, dtype: npt.DTypeLike, copy: bool = ...) -> np.ndarray: ...
@@ -1497,10 +1497,10 @@ def all(
14971497
result = values.all(axis=axis)
14981498

14991499
if skipna:
1500-
return result
1500+
return result # type: ignore[return-value]
15011501
else:
15021502
if not result or len(self) == 0 or not self._mask.any():
1503-
return result
1503+
return result # type: ignore[return-value]
15041504
else:
15051505
return self.dtype.na_value
15061506

‎pandas/core/arrays/sparse/scipy_sparse.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/sparse/scipy_sparse.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ def _levels_to_axis(
7979
ax_coords = codes[valid_ilocs]
8080

8181
ax_labels = ax_labels.tolist()
82-
return ax_coords, ax_labels
82+
return ax_coords, ax_labels # pyright: ignore[reportReturnType]
8383

8484

8585
def _to_ijv(

‎pandas/core/arrays/timedeltas.py

Copy file name to clipboardExpand all lines: pandas/core/arrays/timedeltas.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -325,7 +325,7 @@ def _unbox_scalar(self, value) -> np.timedelta64:
325325
raise ValueError("'value' should be a Timedelta.")
326326
self._check_compatible_with(value)
327327
if value is NaT:
328-
return np.timedelta64(value._value, self.unit)
328+
return np.timedelta64(value._value, self.unit) # type: ignore[call-overload]
329329
else:
330330
return value.as_unit(self.unit, round_ok=False).asm8
331331

‎pandas/core/base.py

Copy file name to clipboardExpand all lines: pandas/core/base.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -875,7 +875,7 @@ def tolist(self) -> list:
875875
>>> idx.to_list()
876876
[1, 2, 3]
877877
"""
878-
return self._values.tolist()
878+
return self._values.tolist() # type: ignore[return-value]
879879

880880
to_list = tolist
881881

‎pandas/core/groupby/generic.py

Copy file name to clipboardExpand all lines: pandas/core/groupby/generic.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -2142,7 +2142,7 @@ def _wrap_applied_output_series(
21422142

21432143
if stacked_values.dtype == object:
21442144
# We'll have the DataFrame constructor do inference
2145-
stacked_values = stacked_values.tolist()
2145+
stacked_values = stacked_values.tolist() # type: ignore[assignment]
21462146
result = self.obj._constructor(stacked_values, index=index, columns=columns)
21472147

21482148
if not self.as_index:

‎pandas/core/groupby/groupby.py

Copy file name to clipboardExpand all lines: pandas/core/groupby/groupby.py
+4-4
Original file line numberDiff line numberDiff line change
@@ -1878,7 +1878,7 @@ def _apply_filter(self, indices, dropna):
18781878
mask.fill(False)
18791879
mask[indices.astype(int)] = True
18801880
# mask fails to broadcast when passed to where; broadcast manually.
1881-
mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T
1881+
mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T # type: ignore[assignment]
18821882
filtered = self._selected_obj.where(mask) # Fill with NaNs.
18831883
return filtered
18841884

@@ -4441,11 +4441,11 @@ def blk_func(values: ArrayLike) -> ArrayLike:
44414441
)
44424442

44434443
if vals.ndim == 1:
4444-
out = out.ravel("K")
4444+
out = out.ravel("K") # type: ignore[assignment]
44454445
if result_mask is not None:
4446-
result_mask = result_mask.ravel("K")
4446+
result_mask = result_mask.ravel("K") # type: ignore[assignment]
44474447
else:
4448-
out = out.reshape(ncols, ngroups * nqs)
4448+
out = out.reshape(ncols, ngroups * nqs) # type: ignore[assignment]
44494449

44504450
return post_processor(out, inference, result_mask, orig_vals)
44514451

‎pandas/core/groupby/ops.py

Copy file name to clipboardExpand all lines: pandas/core/groupby/ops.py
+2-2
Original file line numberDiff line numberDiff line change
@@ -1131,7 +1131,7 @@ def get_iterator(self, data: NDFrame):
11311131
"""
11321132
slicer = lambda start, edge: data.iloc[start:edge]
11331133

1134-
start = 0
1134+
start: np.int64 | int = 0
11351135
for edge, label in zip(self.bins, self.binlabels):
11361136
if label is not NaT:
11371137
yield label, slicer(start, edge)
@@ -1144,7 +1144,7 @@ def get_iterator(self, data: NDFrame):
11441144
def indices(self):
11451145
indices = collections.defaultdict(list)
11461146

1147-
i = 0
1147+
i: np.int64 | int = 0
11481148
for label, bin in zip(self.binlabels, self.bins):
11491149
if i < bin:
11501150
if label is not NaT:

‎pandas/core/indexers/objects.py

Copy file name to clipboardExpand all lines: pandas/core/indexers/objects.py
+4-4
Original file line numberDiff line numberDiff line change
@@ -131,8 +131,8 @@ def get_window_bounds(
131131
if closed in ["left", "neither"]:
132132
end -= 1
133133

134-
end = np.clip(end, 0, num_values)
135-
start = np.clip(start, 0, num_values)
134+
end = np.clip(end, 0, num_values) # type: ignore[assignment]
135+
start = np.clip(start, 0, num_values) # type: ignore[assignment]
136136

137137
return start, end
138138

@@ -402,7 +402,7 @@ def get_window_bounds(
402402
start = np.arange(0, num_values, step, dtype="int64")
403403
end = start + self.window_size
404404
if self.window_size:
405-
end = np.clip(end, 0, num_values)
405+
end = np.clip(end, 0, num_values) # type: ignore[assignment]
406406

407407
return start, end
408408

@@ -488,7 +488,7 @@ def get_window_bounds(
488488
)
489489
window_indices_start += len(indices)
490490
# Extend as we'll be slicing window like [start, end)
491-
window_indices = np.append(window_indices, [window_indices[-1] + 1]).astype(
491+
window_indices = np.append(window_indices, [window_indices[-1] + 1]).astype( # type: ignore[assignment]
492492
np.int64, copy=False
493493
)
494494
start_arrays.append(window_indices.take(ensure_platform_int(start)))

‎pandas/core/indexes/interval.py

Copy file name to clipboardExpand all lines: pandas/core/indexes/interval.py
+1-8
Original file line numberDiff line numberDiff line change
@@ -1279,14 +1279,7 @@ def interval_range(
12791279
breaks = np.linspace(start, end, periods)
12801280
if all(is_integer(x) for x in com.not_none(start, end, freq)):
12811281
# np.linspace always produces float output
1282-
1283-
# error: Argument 1 to "maybe_downcast_numeric" has incompatible type
1284-
# "Union[ndarray[Any, Any], TimedeltaIndex, DatetimeIndex]";
1285-
# expected "ndarray[Any, Any]" [
1286-
breaks = maybe_downcast_numeric(
1287-
breaks, # type: ignore[arg-type]
1288-
dtype,
1289-
)
1282+
breaks = maybe_downcast_numeric(breaks, dtype)
12901283
else:
12911284
# delegate to the appropriate range function
12921285
if isinstance(endpoint, Timestamp):

‎pandas/core/internals/blocks.py

Copy file name to clipboardExpand all lines: pandas/core/internals/blocks.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -2094,7 +2094,7 @@ def _unstack(
20942094
self.values.take(
20952095
indices, allow_fill=needs_masking[i], fill_value=fill_value
20962096
),
2097-
BlockPlacement(place),
2097+
BlockPlacement(place), # type: ignore[arg-type]
20982098
ndim=2,
20992099
)
21002100
for i, (indices, place) in enumerate(zip(new_values, new_placement))

‎pandas/core/internals/construction.py

Copy file name to clipboardExpand all lines: pandas/core/internals/construction.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -634,7 +634,7 @@ def reorder_arrays(
634634
arr = np.empty(length, dtype=object)
635635
arr.fill(np.nan)
636636
else:
637-
arr = arrays[k]
637+
arr = arrays[k] # type: ignore[assignment]
638638
new_arrays.append(arr)
639639

640640
arrays = new_arrays

‎pandas/core/missing.py

Copy file name to clipboardExpand all lines: pandas/core/missing.py
+3-5
Original file line numberDiff line numberDiff line change
@@ -241,7 +241,8 @@ def find_valid_index(how: str, is_valid: npt.NDArray[np.bool_]) -> int | None:
241241
return None
242242

243243
if is_valid.ndim == 2:
244-
is_valid = is_valid.any(axis=1) # reduce axis 1
244+
# reduce axis 1
245+
is_valid = is_valid.any(axis=1) # type: ignore[assignment]
245246

246247
if how == "first":
247248
idxpos = is_valid[::].argmax()
@@ -404,10 +405,7 @@ def func(yvalues: np.ndarray) -> None:
404405
**kwargs,
405406
)
406407

407-
# error: No overload variant of "apply_along_axis" matches
408-
# argument types "Callable[[ndarray[Any, Any]], None]",
409-
# "int", "ndarray[Any, Any]"
410-
np.apply_along_axis(func, axis, data) # type: ignore[call-overload]
408+
np.apply_along_axis(func, axis, data)
411409

412410

413411
def _index_to_interp_indices(index: Index, method: str) -> np.ndarray:

‎pandas/core/reshape/encoding.py

Copy file name to clipboardExpand all lines: pandas/core/reshape/encoding.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -357,7 +357,7 @@ def get_empty_frame(data) -> DataFrame:
357357

358358
if drop_first:
359359
# remove first GH12042
360-
dummy_mat = dummy_mat[:, 1:]
360+
dummy_mat = dummy_mat[:, 1:] # type: ignore[assignment]
361361
dummy_cols = dummy_cols[1:]
362362
return DataFrame(dummy_mat, index=index, columns=dummy_cols, dtype=_dtype)
363363

‎pandas/core/reshape/merge.py

Copy file name to clipboardExpand all lines: pandas/core/reshape/merge.py
+1-3
Original file line numberDiff line numberDiff line change
@@ -2921,9 +2921,7 @@ def _convert_arrays_and_get_rizer_klass(
29212921
lk = lk.astype(dtype, copy=False)
29222922
rk = rk.astype(dtype, copy=False)
29232923
if isinstance(lk, BaseMaskedArray):
2924-
# Invalid index type "type" for "Dict[Type[object], Type[Factorizer]]";
2925-
# expected type "Type[object]"
2926-
klass = _factorizers[lk.dtype.type] # type: ignore[index]
2924+
klass = _factorizers[lk.dtype.type]
29272925
elif isinstance(lk.dtype, ArrowDtype):
29282926
klass = _factorizers[lk.dtype.numpy_dtype.type]
29292927
else:

‎pandas/core/sorting.py

Copy file name to clipboardExpand all lines: pandas/core/sorting.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -476,7 +476,7 @@ def nargminmax(values: ExtensionArray, method: str, axis: AxisInt = 0):
476476
zipped = zip(arr_values, mask)
477477
else:
478478
zipped = zip(arr_values.T, mask.T)
479-
return np.array([_nanargminmax(v, m, func) for v, m in zipped])
479+
return np.array([_nanargminmax(v, m, func) for v, m in zipped]) # type: ignore[arg-type]
480480
return func(arr_values, axis=axis)
481481

482482
return _nanargminmax(arr_values, mask, func)

‎pandas/io/formats/format.py

Copy file name to clipboardExpand all lines: pandas/io/formats/format.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -1495,7 +1495,7 @@ def _format_strings(self) -> list[str]:
14951495
fmt_values = values._format_native_types(
14961496
na_rep=self.nat_rep, date_format=self.date_format
14971497
)
1498-
return fmt_values.tolist()
1498+
return fmt_values.tolist() # type: ignore[return-value]
14991499

15001500

15011501
class _ExtensionArrayFormatter(_GenericArrayFormatter):

‎pandas/io/parsers/python_parser.py

Copy file name to clipboardExpand all lines: pandas/io/parsers/python_parser.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -1468,7 +1468,7 @@ def detect_colspecs(
14681468
shifted[0] = 0
14691469
edges = np.where((mask ^ shifted) == 1)[0]
14701470
edge_pairs = list(zip(edges[::2], edges[1::2]))
1471-
return edge_pairs
1471+
return edge_pairs # type: ignore[return-value]
14721472

14731473
def __next__(self) -> list[str]:
14741474
# Argument 1 to "next" has incompatible type "Union[IO[str],

‎pandas/plotting/_matplotlib/style.py

Copy file name to clipboardExpand all lines: pandas/plotting/_matplotlib/style.py
+1-1
Original file line numberDiff line numberDiff line change
@@ -273,7 +273,7 @@ def _random_color(column: int) -> list[float]:
273273
"""Get a random color represented as a list of length 3"""
274274
# GH17525 use common._random_state to avoid resetting the seed
275275
rs = com.random_state(column)
276-
return rs.rand(3).tolist()
276+
return rs.rand(3).tolist() # type: ignore[return-value]
277277

278278

279279
def _is_single_string_color(color: Color) -> bool:

‎pandas/tests/dtypes/test_missing.py

Copy file name to clipboardExpand all lines: pandas/tests/dtypes/test_missing.py
+2-2
Original file line numberDiff line numberDiff line change
@@ -769,8 +769,8 @@ def test_empty_like(self):
769769
np.datetime64("NaT"),
770770
np.timedelta64("NaT"),
771771
]
772-
+ [np.datetime64("NaT", unit) for unit in m8_units]
773-
+ [np.timedelta64("NaT", unit) for unit in m8_units]
772+
+ [np.datetime64("NaT", unit) for unit in m8_units] # type: ignore[call-overload]
773+
+ [np.timedelta64("NaT", unit) for unit in m8_units] # type: ignore[call-overload]
774774
)
775775

776776
inf_vals = [

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.