-
-
Notifications
You must be signed in to change notification settings - Fork 10.8k
TYP: Gradual shape type defaults #28982
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
mypy primer is looking pretty good in general |
e190d6c
to
a16ef8c
Compare
Diff from mypy_primer, showing the effect of this PR on type check results on a corpus of open source code: hydpy (https://github.com/hydpy-dev/hydpy)
- hydpy/core/testtools.py:1516: error: Incompatible return value type (got "dict[ModelSequence, ndarray[tuple[int, int], dtype[float64]]]", expected "dict[ModelSequence, ndarray[tuple[int, ...], dtype[float64]]]") [return-value]
- hydpy/core/testtools.py:1516: note: "Dict" is invariant -- see https://mypy.readthedocs.io/en/stable/common_issues.html#variance
- hydpy/core/testtools.py:1516: note: Consider using "Mapping" instead, which is covariant in the value type
- hydpy/core/testtools.py:1516: note: Perhaps you need a type annotation for "yvalues"? Suggestion: "dict[ModelSequence, ndarray[tuple[int, ...], dtype[float64]]]"
+ hydpy/core/objecttools.py:955: error: Argument 1 to "repr_values" has incompatible type "Sequence[object] | ndarray[tuple[Any, ...], dtype[generic[Any]]] | generic[Any]"; expected "Sequence[object] | ndarray[tuple[Any, ...], dtype[generic[Any]]]" [arg-type]
+ hydpy/core/netcdftools.py:489: error: Argument 1 to "join" of "bytes" has incompatible type "bytes_"; expected "Iterable[Buffer]" [arg-type]
+ hydpy/core/netcdftools.py:489: note: Following member(s) of "bytes_" have conflicts:
+ hydpy/core/netcdftools.py:489: note: Expected:
+ hydpy/core/netcdftools.py:489: note: def __iter__(self) -> Iterator[Buffer]
+ hydpy/core/netcdftools.py:489: note: Got:
+ hydpy/core/netcdftools.py:489: note: def __iter__(self) -> Iterator[int]
+ hydpy/core/netcdftools.py:489: note: Expected:
+ hydpy/core/netcdftools.py:489: note: def __iter__(self) -> Iterator[Buffer]
+ hydpy/core/netcdftools.py:489: note: Got:
+ hydpy/core/netcdftools.py:489: note: def __iter__(self) -> Iterator[int]
+ hydpy/core/netcdftools.py:489: note: Expected:
+ hydpy/core/netcdftools.py:489: note: def __iter__(self) -> Iterator[Buffer]
+ hydpy/core/netcdftools.py:489: note: Got:
+ hydpy/core/netcdftools.py:489: note: def __iter__(self) -> Iterator[int]
- hydpy/core/itemtools.py:951: error: Argument 2 to "update_variable" of "ChangeItem" has incompatible type "float64"; expected "ndarray[tuple[int, ...], dtype[float64]]" [arg-type]
+ hydpy/core/itemtools.py:951: error: Argument 2 to "update_variable" of "ChangeItem" has incompatible type "float64"; expected "ndarray[tuple[Any, ...], dtype[float64]]" [arg-type]
- hydpy/core/itemtools.py:954: error: Argument 2 to "update_variable" of "ChangeItem" has incompatible type "float64"; expected "ndarray[tuple[int, ...], dtype[float64]]" [arg-type]
+ hydpy/core/itemtools.py:954: error: Argument 2 to "update_variable" of "ChangeItem" has incompatible type "float64"; expected "ndarray[tuple[Any, ...], dtype[float64]]" [arg-type]
- hydpy/auxs/statstools.py:298: error: Argument "sim" to "SimObs" has incompatible type "Series[Any]"; expected "ndarray[tuple[int, ...], dtype[float64]]" [arg-type]
+ hydpy/auxs/statstools.py:298: error: Argument "sim" to "SimObs" has incompatible type "Series[Any]"; expected "ndarray[tuple[Any, ...], dtype[float64]]" [arg-type]
- hydpy/auxs/statstools.py:298: error: Argument "obs" to "SimObs" has incompatible type "Series[Any]"; expected "ndarray[tuple[int, ...], dtype[float64]]" [arg-type]
+ hydpy/auxs/statstools.py:298: error: Argument "obs" to "SimObs" has incompatible type "Series[Any]"; expected "ndarray[tuple[Any, ...], dtype[float64]]" [arg-type]
- hydpy/auxs/ppolytools.py:256: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, signedinteger[_64Bit]], dtype[float64]]", variable has type "Sequence[Sequence[float] | ndarray[tuple[int, ...], dtype[float64]]] | ndarray[tuple[int, ...], dtype[float64]]") [assignment]
- hydpy/auxs/ppolytools.py:423: error: No overload variant of "CubicHermiteSpline" matches argument types "ndarray[tuple[int, ...], dtype[float64]]", "ndarray[tuple[int, ...], dtype[float64]]" [call-overload]
+ hydpy/auxs/ppolytools.py:423: error: No overload variant of "CubicHermiteSpline" matches argument types "ndarray[tuple[Any, ...], dtype[float64]]", "ndarray[tuple[Any, ...], dtype[float64]]" [call-overload]
- hydpy/auxs/ppolytools.py:427: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[signedinteger[_64Bit]]]", variable has type "ndarray[tuple[int], dtype[signedinteger[_64Bit]]]") [assignment]
- hydpy/auxs/armatools.py:258: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[float64]]") [assignment]
- hydpy/models/rconc/rconc_control.py:422: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], Any]", variable has type "ndarray[tuple[int], dtype[floating[Any]]]") [assignment]
freqtrade (https://github.com/freqtrade/freqtrade)
- freqtrade/data/metrics.py:122: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>" [index]
+ freqtrade/data/metrics.py:122: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>" [index]
- freqtrade/data/entryexitanalysis.py:59: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>" [index]
+ freqtrade/data/entryexitanalysis.py:59: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>" [index]
- freqtrade/data/entryexitanalysis.py:60: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>" [index]
+ freqtrade/data/entryexitanalysis.py:60: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "Series[builtins.bool] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | str | str_ | <9 more items>" [index]
- freqtrade/data/entryexitanalysis.py:60: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>" [index]
+ freqtrade/data/entryexitanalysis.py:60: error: Invalid index type "tuple[Hashable, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>" [index]
- freqtrade/plot/plotting.py:187: error: Invalid index type "tuple[datetime, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>" [index]
+ freqtrade/plot/plotting.py:187: error: Invalid index type "tuple[datetime, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>" [index]
- freqtrade/plot/plotting.py:188: error: Invalid index type "tuple[datetime, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>" [index]
+ freqtrade/plot/plotting.py:188: error: Invalid index type "tuple[datetime, str]" for "_LocIndexerFrame[DataFrame]"; expected type "slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | <6 more items>" [index]
- freqtrade/freqai/data_drawer.py:363: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
+ freqtrade/freqai/data_drawer.py:363: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
- freqtrade/freqai/data_drawer.py:363: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "tuple[int, int]" [index]
+ freqtrade/freqai/data_drawer.py:363: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "tuple[int, int]" [index]
- freqtrade/freqai/data_drawer.py:368: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
+ freqtrade/freqai/data_drawer.py:368: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
- freqtrade/freqai/data_drawer.py:369: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
+ freqtrade/freqai/data_drawer.py:369: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
- freqtrade/freqai/data_drawer.py:373: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
+ freqtrade/freqai/data_drawer.py:373: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
- freqtrade/freqai/data_drawer.py:376: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
+ freqtrade/freqai/data_drawer.py:376: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
- freqtrade/freqai/data_drawer.py:383: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
+ freqtrade/freqai/data_drawer.py:383: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
- freqtrade/freqai/data_drawer.py:387: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
+ freqtrade/freqai/data_drawer.py:387: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int] | tuple[int, int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], int] | tuple[slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int], slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]] | tuple[int, slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[integer[Any]]] | Index[Any] | list[int] | Series[int]]" [index]
- freqtrade/freqai/data_drawer.py:387: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "tuple[int, int]" [index]
+ freqtrade/freqai/data_drawer.py:387: error: Invalid index type "tuple[int, int | slice[Any, Any, Any] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]]" for "_iLocIndexerFrame[DataFrame]"; expected type "tuple[int, int]" [index]
... (truncated 28 lines) ...
AutoSplit (https://github.com/Toufool/AutoSplit)
- src/capture_method/XcbCaptureMethod.py:58:17: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "Image") [assignment]
+ src/capture_method/XcbCaptureMethod.py:58:17: error: Incompatible types in assignment (expression has type "ndarray[tuple[Any, ...], dtype[Any]]", variable has type "Image") [assignment]
- src/capture_method/ScrotCaptureMethod.py:48:17: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "Image") [assignment]
+ src/capture_method/ScrotCaptureMethod.py:48:17: error: Incompatible types in assignment (expression has type "ndarray[tuple[Any, ...], dtype[Any]]", variable has type "Image") [assignment]
xarray (https://github.com/pydata/xarray)
- xarray/core/indexing.py:1152: error: Argument 1 to "append" of "list" has incompatible type "ndarray[tuple[int, ...], dtype[Any]]"; expected "slice[Any, Any, Any]" [arg-type]
+ xarray/core/indexing.py:1152: error: Argument 1 to "append" of "list" has incompatible type "ndarray[tuple[Any, ...], dtype[Any]]"; expected "slice[Any, Any, Any]" [arg-type]
- xarray/tests/test_parallelcompat.py:93: error: Return type "tuple[ndarray[tuple[int, ...], dtype[Any]], ...]" of "compute" incompatible with return type "tuple[ndarray[Any, _DType_co], ...]" in supertype "ChunkManagerEntrypoint" [override]
+ xarray/tests/test_parallelcompat.py:93: error: Return type "tuple[ndarray[tuple[Any, ...], dtype[Any]], ...]" of "compute" incompatible with return type "tuple[ndarray[Any, _DType_co], ...]" in supertype "ChunkManagerEntrypoint" [override]
- xarray/tests/test_dataarray.py:3810: error: Argument 1 to "len" has incompatible type "ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | numpy.bool[builtins.bool]"; expected "Sized" [arg-type]
+ xarray/tests/test_dataarray.py:3810: error: Argument 1 to "len" has incompatible type "ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | numpy.bool[builtins.bool]"; expected "Sized" [arg-type]
dedupe (https://github.com/dedupeio/dedupe)
+ dedupe/clustering.py:59: error: Incompatible types in assignment (expression has type "signedinteger[_64Bit]", variable has type "int") [assignment]
+ dedupe/labeler.py:199: error: Generator has incompatible item type "tuple[int | str, int | str]"; expected "tuple[int, int] | tuple[str, str]" [misc]
- dedupe/datamodel.py:122: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[float64]]", variable has type "ndarray[tuple[int, int], dtype[Any]]") [assignment]
- dedupe/convenience.py:43: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[signedinteger[Any]]]") [assignment]
- dedupe/convenience.py:73: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[signedinteger[Any]]]", variable has type "ndarray[tuple[int], dtype[signedinteger[Any]]]") [assignment]
+ dedupe/convenience.py:99: error: "signedinteger[_64Bit]" object is not iterable [misc]
+ dedupe/convenience.py:99: error: Cannot determine type of "p" [has-type]
+ dedupe/convenience.py:99: error: Cannot determine type of "q" [has-type]
optuna (https://github.com/optuna/optuna)
- optuna/_hypervolume/hssp.py:108: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[signedinteger[Any]]]", variable has type "ndarray[tuple[int], dtype[signedinteger[Any]]]") [assignment]
- optuna/_hypervolume/box_decomposition.py:92: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int, int, int], dtype[Any]]") [assignment]
- tests/hypervolume_tests/test_wfg.py:26: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int, int], dtype[Any]]") [assignment]
pandas (https://github.com/pandas-dev/pandas)
+ pandas/core/arrays/arrow/_arrow_utils.py:47: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/core/_numba/executor.py:90: error: Incompatible redefinition (redefinition with type "Callable[[ndarray[tuple[Any, ...], dtype[Any]], ndarray[tuple[Any, ...], dtype[Any]], ndarray[tuple[Any, ...], dtype[Any]], int, VarArg(Any)], Any]", original type "Callable[[ndarray[tuple[Any, ...], dtype[Any]], ndarray[tuple[Any, ...], dtype[Any]], int, int, VarArg(Any)], Any]") [misc]
- pandas/core/window/numba_.py:238: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int, int], dtype[float64]]") [assignment]
- pandas/core/_numba/executor.py:90: error: Incompatible redefinition (redefinition with type "Callable[[ndarray[tuple[int, ...], dtype[Any]], ndarray[tuple[int, ...], dtype[Any]], ndarray[tuple[int, ...], dtype[Any]], int, VarArg(Any)], Any]", original type "Callable[[ndarray[tuple[int, ...], dtype[Any]], ndarray[tuple[int, ...], dtype[Any]], int, int, VarArg(Any)], Any]") [misc]
+ pandas/core/array_algos/quantile.py:105: error: Unused "type: ignore" comment [unused-ignore]
- pandas/core/construction.py:687: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]") [assignment]
- pandas/core/construction.py:689: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]") [assignment]
+ pandas/tseries/frequencies.py:274: error: List comprehension has incompatible type List[floating[_64Bit]]; expected List[int] [misc]
+ pandas/tseries/frequencies.py:279: error: List comprehension has incompatible type List[floating[_64Bit]]; expected List[int] [misc]
+ pandas/core/arrays/arrow/array.py:2543: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/core/arrays/datetimelike.py:1293: error: No overload variant of "__mul__" of "BaseOffset" matches argument type "signedinteger[_64Bit]" [operator]
+ pandas/core/arrays/datetimelike.py:1293: note: Possible overload variants:
+ pandas/core/arrays/datetimelike.py:1293: note: def __mul__(self, ndarray[tuple[Any, ...], dtype[Any]], /) -> ndarray[tuple[Any, ...], dtype[Any]]
+ pandas/core/arrays/datetimelike.py:1293: note: def __mul__(self, int, /) -> BaseOffset
- pandas/core/arrays/categorical.py:1858: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[signedinteger[Any]]]") [assignment]
+ pandas/core/arrays/categorical.py:1856: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/io/stata.py:1448: error: Invalid index type "unsignedinteger[_8Bit]" for "dict[int, int]"; expected type "int" [index]
+ pandas/io/stata.py:1450: error: Argument 1 to "append" of "list" has incompatible type "unsignedinteger[_8Bit]"; expected "int" [arg-type]
- pandas/core/frame.py:11368: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[float64]]", variable has type "ndarray[tuple[int, int], dtype[float64]]") [assignment]
- pandas/core/reshape/concat.py:936: error: Generator has incompatible item type "ndarray[tuple[int, ...], dtype[Any]]"; expected "ndarray[tuple[int], dtype[Any]]" [misc]
- pandas/core/reshape/concat.py:940: error: Argument 1 to "append" of "list" has incompatible type "ndarray[tuple[int, ...], dtype[Any]]"; expected "ndarray[tuple[int], dtype[Any]]" [arg-type]
+ pandas/core/reshape/encoding.py:362: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/core/internals/managers.py:1527: error: "BlockPlacement" has no attribute "increment_above" [attr-defined]
+ pandas/core/indexers/objects.py:134: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/core/indexers/objects.py:135: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/core/indexers/objects.py:405: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/core/indexers/objects.py:491: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/core/groupby/groupby.py:1888: error: Unused "type: ignore" comment [unused-ignore]
+ pandas/io/formats/style_render.py:1243: error: Invalid index type "tuple[signedinteger[_32Bit | _64Bit], signedinteger[_32Bit | _64Bit]]" for "defaultdict[tuple[int, int], Callable[[Any], str]]"; expected type "tuple[int, int]" [index]
scipy (https://github.com/scipy/scipy)
+ scipy/optimize/_isotonic.py:147: error: Unused "type: ignore" comment [unused-ignore]
- scipy/spatial/tests/test_spherical_voronoi.py:255: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "list[ndarray[tuple[int, ...], dtype[Any]]]") [assignment]
+ scipy/spatial/tests/test_spherical_voronoi.py:255: error: Incompatible types in assignment (expression has type "ndarray[tuple[Any, ...], dtype[Any]]", variable has type "list[ndarray[tuple[Any, ...], dtype[Any]]]") [assignment]
spark (https://github.com/apache/spark)
- python/pyspark/sql/pandas/types.py:633: error: Argument "ambiguous" to "tz_localize" of "_DatetimeLikeNoTZMethods" has incompatible type "Literal[False]"; expected "Literal['raise', 'infer', 'NaT'] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]]" [arg-type]
+ python/pyspark/sql/pandas/types.py:633: error: Argument "ambiguous" to "tz_localize" of "_DatetimeLikeNoTZMethods" has incompatible type "Literal[False]"; expected "Literal['raise', 'infer', 'NaT'] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]]" [arg-type]
+ python/pyspark/sql/pandas/conversion.py:621: error: Argument 1 to "len" has incompatible type "dtype[Any]"; expected "Sized" [arg-type]
+ python/pyspark/sql/pandas/conversion.py:627: error: Incompatible types in assignment (expression has type "str", variable has type "dtype[Any]") [assignment]
+ python/pyspark/sql/pandas/conversion.py:629: error: Value of type "tuple[str, ...] | None" is not indexable [index]
- python/pyspark/pandas/namespace.py:1139: note: def [IntStrT: (int, str)] read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[IntStrT], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[IntStrT, DataFrame]
+ python/pyspark/pandas/namespace.py:1139: note: def [IntStrT: (int, str)] read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[IntStrT], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[Any, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[IntStrT, DataFrame]
- python/pyspark/pandas/namespace.py:1139: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: None, *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[str, DataFrame]
+ python/pyspark/pandas/namespace.py:1139: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: None, *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[Any, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[str, DataFrame]
- python/pyspark/pandas/namespace.py:1139: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[int | str], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[int | str, DataFrame]
+ python/pyspark/pandas/namespace.py:1139: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: list[int | str], *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[Any, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> dict[int | str, DataFrame]
- python/pyspark/pandas/namespace.py:1139: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: int | str = ..., *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[int, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> DataFrame
+ python/pyspark/pandas/namespace.py:1139: note: def read_excel(io: str | PathLike[str] | ReadBuffer[bytes] | ExcelFile | Any | Any | Any | Any, sheet_name: int | str = ..., *, header: int | Sequence[int] | None = ..., names: MutableSequence[Any] | ndarray[tuple[Any, ...], dtype[Any]] | tuple[Any, ...] | range | None = ..., index_col: int | Sequence[int] | str | None = ..., usecols: str | SequenceNotStr[Hashable] | range | ExtensionArray | ndarray[Any, Any] | Index[Any] | Series[Any] | Callable[[Any], bool] | None = ..., dtype: str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object] | Mapping[str, str | ExtensionDtype | str | dtype[generic[Any]] | type[str] | type[complex] | type[bool] | type[object]] | None = ..., engine: Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb', 'calamine'] | None = ..., converters: Mapping[int | str, Callable[[object], object]] | None = ..., true_values: Iterable[Hashable] | None = ..., false_values: Iterable[Hashable] | None = ..., skiprows: int | Sequence[int] | Callable[[object], bool] | None = ..., nrows: int | None = ..., na_values: Sequence[str] | dict[str | int, Sequence[str]] = ..., keep_default_na: bool = ..., na_filter: bool = ..., verbose: bool = ..., parse_dates: bool | Sequence[int] | Sequence[Sequence[str] | Sequence[int]] | dict[str, Sequence[int] | list[str]] = ..., date_format: dict[Hashable, str] | str | None = ..., thousands: str | None = ..., decimal: str = ..., comment: str | None = ..., skipfooter: int = ..., storage_options: dict[str, Any] | None = ..., dtype_backend: Literal['pyarrow', 'numpy_nullable'] | Literal[_NoDefault.no_default] = ...) -> DataFrame
- python/pyspark/ml/linalg/__init__.py:1145: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]") [assignment]
- python/pyspark/ml/linalg/__init__.py:1149: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]") [assignment]
- python/pyspark/ml/functions.py:244: note: def [_ScalarT: generic[Any]] vstack(tup: Sequence[_SupportsArray[dtype[_ScalarT]] | _NestedSequence[_SupportsArray[dtype[_ScalarT]]]], *, dtype: None = ..., casting: Literal['no', 'equiv', 'safe', 'same_kind', 'unsafe'] = ...) -> ndarray[tuple[int, ...], dtype[_ScalarT]]
+ python/pyspark/ml/functions.py:244: note: def [_ScalarT: generic[Any]] vstack(tup: Sequence[_SupportsArray[dtype[_ScalarT]] | _NestedSequence[_SupportsArray[dtype[_ScalarT]]]], *, dtype: None = ..., casting: Literal['no', 'equiv', 'safe', 'same_kind', 'unsafe'] = ...) -> ndarray[tuple[Any, ...], dtype[_ScalarT]]
- python/pyspark/ml/functions.py:244: note: def [_ScalarT: generic[Any]] vstack(tup: Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str]], *, dtype: type[_ScalarT] | dtype[_ScalarT] | _SupportsDType[dtype[_ScalarT]], casting: Literal['no', 'equiv', 'safe', 'same_kind', 'unsafe'] = ...) -> ndarray[tuple[int, ...], dtype[_ScalarT]]
+ python/pyspark/ml/functions.py:244: note: def [_ScalarT: generic[Any]] vstack(tup: Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str]], *, dtype: type[_ScalarT] | dtype[_ScalarT] | _SupportsDType[dtype[_ScalarT]], casting: Literal['no', 'equiv', 'safe', 'same_kind', 'unsafe'] = ...) -> ndarray[tuple[Any, ...], dtype[_ScalarT]]
... (truncated 4 lines) ...
static-frame (https://github.com/static-frame/static-frame)
+ static_frame/core/util.py:1977: error: Unused "type: ignore" comment [unused-ignore]
+ static_frame/core/rank.py:79: error: Unused "type: ignore" comment [unused-ignore]
+ static_frame/core/rank.py:93: error: Unused "type: ignore" comment [unused-ignore]
+ static_frame/core/rank.py:96: error: Unused "type: ignore" comment [unused-ignore]
+ static_frame/core/loc_map.py:413: error: Incompatible types in assignment (expression has type "unsignedinteger[_64Bit]", variable has type "ndarray[tuple[Any, ...], dtype[unsignedinteger[_64Bit]]]") [assignment]
- static_frame/core/frame.py:7524: error: Incompatible types in assignment (expression has type "ndarray[tuple[int, ...], dtype[Any]]", variable has type "ndarray[tuple[int], dtype[Any]]") [assignment]
scipy-stubs (https://github.com/scipy/scipy-stubs)
- tests/optimize/minimize.pyi:13: error: No overload variant of "minimize" matches argument types "Callable[[ndarray[tuple[int, ...], dtype[floating[_16Bit] | floating[_32Bit] | float64]], ndarray[tuple[int, ...], dtype[floating[_16Bit] | floating[_32Bit] | float64]]], float64]", "int", "tuple[ndarray[tuple[int, ...], dtype[Any]]]", "str", "dict[str, float]" [call-overload]
+ tests/optimize/minimize.pyi:13: error: No overload variant of "minimize" matches argument types "Callable[[ndarray[tuple[Any, ...], dtype[floating[_16Bit] | floating[_32Bit] | float64]], ndarray[tuple[Any, ...], dtype[floating[_16Bit] | floating[_32Bit] | float64]]], float64]", "int", "tuple[ndarray[tuple[Any, ...], dtype[Any]]]", "str", "dict[str, float]" [call-overload]
pandera (https://github.com/pandera-dev/pandera)
- pandera/engines/pandas_engine.py:1384: error: Invalid index type "Series[builtins.bool] | DataFrame" for "Series[Any]"; expected type "list[str] | Index[Any] | Series[Any] | slice[Any, Any, Any] | Series[builtins.bool] | ndarray[tuple[int, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | tuple[Hashable | slice[Any, Any, Any], ...]" [index]
+ pandera/engines/pandas_engine.py:1384: error: Invalid index type "Series[builtins.bool] | DataFrame" for "Series[Any]"; expected type "list[str] | Index[Any] | Series[Any] | slice[Any, Any, Any] | Series[builtins.bool] | ndarray[tuple[Any, ...], dtype[numpy.bool[builtins.bool]]] | list[builtins.bool] | tuple[Hashable | slice[Any, Any, Any], ...]" [index]
- pandera/strategies/pandas_strategies.py:71: note: def mask(self, cond: Series[Any] | Series[bool] | ndarray[tuple[int, ...], dtype[Any]] | Callable[[Series[Any]], Series[bool]] | Callable[[Any], bool], other: str | bytes | date | datetime | timedelta | <12 more items> | None = ..., *, inplace: Literal[True], axis: Literal['index', 0] | None = ..., level: Hashable | int | None = ...) -> None
+ pandera/strategies/pandas_strategies.py:71: note: def mask(self, cond: Series[Any] | Series[bool] | ndarray[tuple[Any, ...], dtype[Any]] | Callable[[Series[Any]], Series[bool]] | Callable[[Any], bool], other: str | bytes | date | datetime | timedelta | <12 more items> | None = ..., *, inplace: Literal[True], axis: Literal['index', 0] | None = ..., level: Hashable | int | None = ...) -> None
... (truncated 16 lines) ...``` |
@mroeschke here's another one that's causing some new mypy errors in pandas. Are you seeing anything you don't like? |
Looks OK to me |
@MarcoGorelli this also touches a bit of |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nice, thanks for the ping
From the typing spec:
So by using
tuple[Any, ...]
instead oftuple[int, ...]
as shape-type default, we prevent situations where users are not allowed to assign an array with unknown shape-type to an array-type with a known shape type.The downside is that there are certain situations where (mostly) mypy will over-eagerly pick the first overload, where it would previously pick a different one. But I only saw this happen once in the tests, and managed to work around it.
Let's see what mypy_primer has to say about this.