Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

TYP: Fix overlapping overloads issue in 2->1 ufuncs #28176

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 17, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
TYP: Fix overlapping overloads issue in 2->1 ufuncs
  • Loading branch information
jorenham authored and charris committed Jan 17, 2025
commit f782790c08c50120b68641b3557ab96f5c1964c7
160 changes: 111 additions & 49 deletions 160 numpy/_typing/_ufunc.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -4,32 +4,32 @@ The signatures of the ufuncs are too varied to reasonably type
with a single class. So instead, `ufunc` has been expanded into
four private subclasses, one for each combination of
`~ufunc.nin` and `~ufunc.nout`.

"""

from typing import (
Any,
Generic,
Literal,
NoReturn,
TypedDict,
overload,
Protocol,
SupportsIndex,
TypeAlias,
TypedDict,
TypeVar,
Literal,
SupportsIndex,
Protocol,
overload,
type_check_only,
)

from typing_extensions import LiteralString, Unpack

import numpy as np
from numpy import ufunc, _CastingKind, _OrderKACF
from numpy import _CastingKind, _OrderKACF, ufunc
from numpy.typing import NDArray

from ._shape import _ShapeLike
from ._scalars import _ScalarLike_co
from ._array_like import ArrayLike, _ArrayLikeBool_co, _ArrayLikeInt_co
from ._dtype_like import DTypeLike
from ._scalars import _ScalarLike_co
from ._shape import _ShapeLike

_T = TypeVar("_T")
_2Tuple: TypeAlias = tuple[_T, _T]
Expand Down Expand Up @@ -61,6 +61,13 @@ class _SupportsArrayUFunc(Protocol):
**kwargs: Any,
) -> Any: ...

@type_check_only
class _UFunc3Kwargs(TypedDict, total=False):
where: _ArrayLikeBool_co | None
casting: _CastingKind
order: _OrderKACF
subok: bool
signature: _3Tuple[str | None] | str | None

# NOTE: `reduce`, `accumulate`, `reduceat` and `outer` raise a ValueError for
# ufuncs that don't accept two input arguments and return one output argument.
Expand All @@ -72,6 +79,8 @@ class _SupportsArrayUFunc(Protocol):
# NOTE: If 2 output types are returned then `out` must be a
# 2-tuple of arrays. Otherwise `None` or a plain array are also acceptable

# pyright: reportIncompatibleMethodOverride=false

@type_check_only
class _UFunc_Nin1_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
@property
Expand Down Expand Up @@ -162,34 +171,61 @@ class _UFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: i
@property
def signature(self) -> None: ...

@overload
@overload # (scalar, scalar) -> scalar
def __call__(
self,
__x1: _ScalarLike_co,
__x2: _ScalarLike_co,
out: None = ...,
x1: _ScalarLike_co,
x2: _ScalarLike_co,
/,
out: None = None,
*,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> Any: ...
@overload
@overload # (array-like, array) -> array
def __call__(
self,
__x1: ArrayLike,
__x2: ArrayLike,
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
x1: ArrayLike,
x2: NDArray[np.generic],
/,
out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None,
*,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> NDArray[Any]: ...
@overload # (array, array-like) -> array
def __call__(
self,
x1: NDArray[np.generic],
x2: ArrayLike,
/,
out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None,
*,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> NDArray[Any]: ...
@overload # (array-like, array-like, out=array) -> array
def __call__(
self,
x1: ArrayLike,
x2: ArrayLike,
/,
out: NDArray[np.generic] | tuple[NDArray[np.generic]],
*,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> NDArray[Any]: ...
@overload # (array-like, array-like) -> array | scalar
def __call__(
self,
x1: ArrayLike,
x2: ArrayLike,
/,
out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None,
*,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> NDArray[Any] | Any: ...

def at(
self,
Expand Down Expand Up @@ -227,35 +263,61 @@ class _UFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: i
out: None | NDArray[Any] = ...,
) -> NDArray[Any]: ...

# Expand `**kwargs` into explicit keyword-only arguments
@overload
@overload # (scalar, scalar) -> scalar
def outer(
self,
A: _ScalarLike_co,
B: _ScalarLike_co,
/, *,
out: None = ...,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
/,
*,
out: None = None,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> Any: ...
@overload
def outer( # type: ignore[misc]
@overload # (array-like, array) -> array
def outer(
self,
A: ArrayLike,
B: NDArray[np.generic],
/,
*,
out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> NDArray[Any]: ...
@overload # (array, array-like) -> array
def outer(
self,
A: NDArray[np.generic],
B: ArrayLike,
/, *,
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
/,
*,
out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> NDArray[Any]: ...
@overload # (array-like, array-like, out=array) -> array
def outer(
self,
A: ArrayLike,
B: ArrayLike,
/,
*,
out: NDArray[np.generic] | tuple[NDArray[np.generic]],
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> NDArray[Any]: ...
@overload # (array-like, array-like) -> array | scalar
def outer(
self,
A: ArrayLike,
B: ArrayLike,
/,
*,
out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None,
dtype: DTypeLike | None = None,
**kwds: Unpack[_UFunc3Kwargs],
) -> NDArray[Any] | Any: ...

@type_check_only
class _UFunc_Nin1_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
Expand Down
Loading
Morty Proxy This is a proxified and sanitized view of the page, visit original site.