Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

neka-nat/kinpy

Open more actions menu

Repository files navigation

Build status PyPI version MIT License Downloads

Simple kinematics body toolkit.

Core features

  • Pure python library.
  • Support URDF, SDF and MJCF file.
  • Calculate FK, IK and jacobian.

joint_angle_editor

Installation

pip install kinpy
# or install with visualization support
pip install kinpy[all]

Getting started

Here is a program that reads urdf and generates a kinematic chain.

import kinpy as kp

chain = kp.build_chain_from_urdf(open("kuka_iiwa/model.urdf").read())
print(chain)
# lbr_iiwa_link_0_frame
# └──── lbr_iiwa_link_1_frame
#       └──── lbr_iiwa_link_2_frame
#             └──── lbr_iiwa_link_3_frame
#                   └──── lbr_iiwa_link_4_frame
#                         └──── lbr_iiwa_link_5_frame
#                               └──── lbr_iiwa_link_6_frame
#                                     └──── lbr_iiwa_link_7_frame

Displays the parameter names of joint angles included in the chain.

print(chain.get_joint_parameter_names())
# ['lbr_iiwa_joint_1', 'lbr_iiwa_joint_2', 'lbr_iiwa_joint_3', 'lbr_iiwa_joint_4', 'lbr_iiwa_joint_5', 'lbr_iiwa_joint_6', 'lbr_iiwa_joint_7']

Given joint angle values, calculate forward kinematics.

import math
th = {'lbr_iiwa_joint_2': math.pi / 4.0, 'lbr_iiwa_joint_4': math.pi / 2.0}
ret = chain.forward_kinematics(th)
# {'lbr_iiwa_link_0': Transform(rot=[1. 0. 0. 0.], pos=[0. 0. 0.]), 'lbr_iiwa_link_1': Transform(rot=[1. 0. 0. 0.], pos=[0.     0.     0.1575]), 'lbr_iiwa_link_2': Transform(rot=[-0.27059805  0.27059805  0.65328148  0.65328148], pos=[0.   0.   0.36]), 'lbr_iiwa_link_3': Transform(rot=[-9.23879533e-01  3.96044251e-14 -3.82683432e-01 -1.96942462e-12], pos=[ 1.44603337e-01 -6.78179735e-13  5.04603337e-01]), 'lbr_iiwa_link_4': Transform(rot=[-0.65328148 -0.65328148  0.27059805 -0.27059805], pos=[ 2.96984848e-01 -3.37579445e-13  6.56984848e-01]), 'lbr_iiwa_link_5': Transform(rot=[ 2.84114655e-12  3.82683432e-01 -1.87377891e-12 -9.23879533e-01], pos=[ 1.66523647e-01 -1.00338887e-12  7.87446049e-01]), 'lbr_iiwa_link_6': Transform(rot=[-0.27059805  0.27059805 -0.65328148 -0.65328148], pos=[ 1.41421356e-02 -7.25873884e-13  9.39827561e-01]), 'lbr_iiwa_link_7': Transform(rot=[ 9.23879533e-01  2.61060896e-12 -3.82683432e-01  4.81056861e-12], pos=[-4.31335137e-02 -1.01819561e-12  9.97103210e-01])}

You can get the position and orientation of each link.

If you want to use IK or Jacobian, you need to create a SerialChain. When creating a SerialChain, an end effector must be specified.

chain = kp.build_serial_chain_from_urdf(open("kuka_iiwa/model.urdf"), "lbr_iiwa_link_7")
th = [0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0]
ret = chain.forward_kinematics(th, end_only=True)
# chain.inverse_kinematics(ret)
# chain.jacobian(th)

Visualization

SO101

so101

KUKA IIWA

kuka

Mujoco humanoid

humanoid

Mujoco ant

ant

Simple arm

simple_arm

Citing

@software{kinpy,
    author = {{Kenta-Tanaka et al.}},
    title = {kinpy},
    url = {https://github.com/neka-nat/kinpy},
    version = {0.0.3},
    date = {2019-10-11},
}

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  
Morty Proxy This is a proxified and sanitized view of the page, visit original site.