Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

mez/extended_kalman_filter_python

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

extended_kalman_filter_python

An Extended Kalman Filter (that uses a constant velocity model) in Python. This EKF fuses LIDAR and RADAR sensor readings to estimate location (x,y) and velocity (vx, vy).

Source layout

  1. main.py - Can run the tracker.
  2. tracker.py - Instance that tracks and uses EKF to predict and update state.
  3. efk.py - EKF implementation lives here.
  4. utils.py - Helper methods.

Package requirements

  1. pandas
  2. numpy

Data log input file format

#L(for laser) meas_px meas_py timestamp gt_px gt_py gt_vx gt_vy
#R(for radar) meas_rho meas_phi meas_rho_dot timestamp gt_px gt_py gt_vx gt_vy

Example:
R	8.60363	0.0290616	-2.99903	1477010443399637	8.6	0.25	-3.00029	0
L	8.45	0.25	1477010443349642	8.45	0.25	-3.00027	0

To run the filter

python main.py

Started Tracker for sample-laser-radar-measurement-data-1.txt
estimations count:  1224
measurements count:  1224
RMSE:  [[ 0.06516487  0.06053792  0.53321165  0.5441927 ]]
Metric:  [0.08, 0.08, 0.6, 0.6]
RMSE PASSED metric


Started Tracker for sample-laser-radar-measurement-data-2.txt
estimations count:  200
measurements count:  200
RMSE:  [[ 0.18549633  0.19030227  0.47675529  0.80446808]]
Metric:  [0.2, 0.2, 0.5, 0.85]

About

Python implementation of an Extended Kalman Filter.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.