Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Added support for displaying percentiles to violinplot function #9971

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
added support for percentiles to violinplot
  • Loading branch information
Dylan-Dotti committed Dec 10, 2017
commit 75632e27c7c38c934e752440321dade5f2d43d81
40 changes: 35 additions & 5 deletions 40 lib/matplotlib/axes/_axes.py
Original file line number Diff line number Diff line change
Expand Up @@ -7374,7 +7374,7 @@ def matshow(self, Z, **kwargs):
@_preprocess_data(replace_names=["dataset"], label_namer=None)
def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
showmeans=False, showextrema=True, showmedians=False,
points=100, bw_method=None):
percentiles=[], points=100, bw_method=None):
"""
Make a violin plot.

Expand Down Expand Up @@ -7410,6 +7410,10 @@ def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
showmedians : bool, default = False
If `True`, will toggle rendering of the medians.

percentiles : array-like, default = []
Displays percentiles in the plot for all the given percentiles
in the set

points : scalar, default = 100
Defines the number of points to evaluate each of the
gaussian kernel density estimations at.
Expand Down Expand Up @@ -7457,6 +7461,11 @@ def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
:class:`matplotlib.collections.LineCollection` instance
created to identify the median values of each of the
violin's distribution.

- ``cpercentiles`` : A
:class:`matplotlib.collections.LineCollection` instance
created to identify the percentile values of each of the
violins' distributions
"""

def _kde_method(X, coords):
Expand All @@ -7466,7 +7475,8 @@ def _kde_method(X, coords):
kde = mlab.GaussianKDE(X, bw_method)
return kde.evaluate(coords)

vpstats = cbook.violin_stats(dataset, _kde_method, points=points)
vpstats = cbook.violin_stats(dataset, _kde_method, points=points,
percentiles=percentiles)
return self.violin(vpstats, positions=positions, vert=vert,
widths=widths, showmeans=showmeans,
showextrema=showextrema, showmedians=showmedians)
Expand Down Expand Up @@ -7501,6 +7511,8 @@ def violin(self, vpstats, positions=None, vert=True, widths=0.5,

- ``max``: The maximum value for this violin's dataset.

- ``percentiles``: The percentiles for this violin's dataset.

positions : array-like, default = [1, 2, ..., n]
Sets the positions of the violins. The ticks and limits are
automatically set to match the positions.
Expand All @@ -7523,6 +7535,10 @@ def violin(self, vpstats, positions=None, vert=True, widths=0.5,
showmedians : bool, default = False
If true, will toggle rendering of the medians.

percentiles : array-like, default = []
Displays percentiles in the plot for all the given percentiles in the set.


Returns
-------
result : dict
Expand Down Expand Up @@ -7558,6 +7574,11 @@ def violin(self, vpstats, positions=None, vert=True, widths=0.5,
:class:`matplotlib.collections.LineCollection` instance
created to identify the median values of each of the
violin's distribution.

- ``cpercentiles``: A
:class:`matplotlib.collections.LineCollection` instance
created to identify the percentiles values of each of the
violin's distribution.

"""

Expand All @@ -7566,6 +7587,7 @@ def violin(self, vpstats, positions=None, vert=True, widths=0.5,
mins = []
maxes = []
medians = []
percentiles = []

# Collections to be returned
artists = {}
Expand Down Expand Up @@ -7622,6 +7644,7 @@ def violin(self, vpstats, positions=None, vert=True, widths=0.5,
mins.append(stats['min'])
maxes.append(stats['max'])
medians.append(stats['median'])
percentiles.append(stats['percentiles'])
artists['bodies'] = bodies

# Render means
Expand All @@ -7640,11 +7663,18 @@ def violin(self, vpstats, positions=None, vert=True, widths=0.5,

# Render medians
if showmedians:
artists['cmedians'] = perp_lines(medians,
pmins,
pmaxes,
artists['cmedians'] = perp_lines(medians, pmins, pmaxes,
colors=edgecolor)

# Render percentiles
artists['cpercentiles'] = []
for pcs, pmin, pmax in zip(percentiles, pmins, pmaxes):
linelen = pmax - pmin
artists['cpercentiles'].append(perp_lines(pcs,
pmin + linelen * 0.17,
pmax - linelen * 0.17,
colors=edgecolor))

return artists

def tricontour(self, *args, **kwargs):
Expand Down
15 changes: 13 additions & 2 deletions 15 lib/matplotlib/cbook/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2047,7 +2047,7 @@ def _reshape_2D(X, name):
raise ValueError("{} must have 2 or fewer dimensions".format(name))


def violin_stats(X, method, points=100):
def violin_stats(X, method, points=100, percentiles=[]):
"""
Returns a list of dictionaries of data which can be used to draw a series
of violin plots. See the `Returns` section below to view the required keys
Expand All @@ -2071,6 +2071,9 @@ def violin_stats(X, method, points=100):
Defines the number of points to evaluate each of the gaussian kernel
density estimates at.

percentiles : array-like, default = []
Defines a set of percentiles, if any, that will be displayed per plotted point

Returns
-------

Expand All @@ -2085,6 +2088,7 @@ def violin_stats(X, method, points=100):
- median: The median value for this column of data.
- min: The minimum value for this column of data.
- max: The maximum value for this column of data.
- percentiles: The set of percentiles that will be rendered for this data.
"""

# List of dictionaries describing each of the violins.
Expand All @@ -2093,7 +2097,13 @@ def violin_stats(X, method, points=100):
# Want X to be a list of data sequences
X = _reshape_2D(X, "X")

for x in X:
if percentiles is None:
percentiles = []
percentiles = _reshape_2D(percentiles, "percentiles")
while len(percentiles) < len(X):
percentiles.append([])

for x, pcs in zip(X, percentiles):
# Dictionary of results for this distribution
stats = {}

Expand All @@ -2111,6 +2121,7 @@ def violin_stats(X, method, points=100):
stats['median'] = np.median(x)
stats['min'] = min_val
stats['max'] = max_val
stats['percentiles'] = np.percentile(x, pcs)

# Append to output
vpstats.append(stats)
Expand Down
7 changes: 4 additions & 3 deletions 7 lib/matplotlib/pyplot.py
Original file line number Diff line number Diff line change
Expand Up @@ -3652,8 +3652,8 @@ def triplot(*args, **kwargs):
# changes will be lost
@_autogen_docstring(Axes.violinplot)
def violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False,
showextrema=True, showmedians=False, points=100, bw_method=None,
hold=None, data=None):
showextrema=True, showmedians=False, percentiles=[], points=100,
bw_method=None, hold=None, data=None):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
Expand All @@ -3668,7 +3668,8 @@ def violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False,
ret = ax.violinplot(dataset, positions=positions, vert=vert,
widths=widths, showmeans=showmeans,
showextrema=showextrema, showmedians=showmedians,
points=points, bw_method=bw_method, data=data)
points=points, bw_method=bw_method, data=data,
percentiles=percentiles)
finally:
ax._hold = washold

Expand Down
Morty Proxy This is a proxified and sanitized view of the page, visit original site.