diff --git a/examples/color/colormap_reference.py b/examples/color/colormap_reference.py new file mode 100644 index 000000000000..848fc1c66090 --- /dev/null +++ b/examples/color/colormap_reference.py @@ -0,0 +1,94 @@ +""" +================== +Colormap reference +================== + +Reference for colormaps included with Matplotlib. + +This reference example shows all colormaps included with Matplotlib. Note that +any colormap listed here can be reversed by appending "_r" (e.g., "pink_r"). +These colormaps are divided into the following categories: + +Sequential: + These colormaps are approximately monochromatic colormaps varying smoothly + between two color tones---usually from low saturation (e.g. white) to high + saturation (e.g. a bright blue). Sequential colormaps are ideal for + representing most scientific data since they show a clear progression from + low-to-high values. + +Diverging: + These colormaps have a median value (usually light in color) and vary + smoothly to two different color tones at high and low values. Diverging + colormaps are ideal when your data has a median value that is significant + (e.g. 0, such that positive and negative values are represented by + different colors of the colormap). + +Qualitative: + These colormaps vary rapidly in color. Qualitative colormaps are useful +for + choosing a set of discrete colors. For example:: + + color_list = plt.cm.Set3(np.linspace(0, 1, 12)) + + gives a list of RGB colors that are good for plotting a series of lines on + a dark background. + +Miscellaneous: + Colormaps that don't fit into the categories above. + +""" +import numpy as np +import matplotlib.pyplot as plt + + +# Have colormaps separated into categories: +# http://matplotlib.org/examples/color/colormaps_reference.html +cmaps = [('Perceptually Uniform Sequential', [ + 'viridis', 'plasma', 'inferno', 'magma']), + ('Sequential', [ + 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', + 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', + 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']), + ('Sequential (2)', [ + 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', + 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', + 'hot', 'afmhot', 'gist_heat', 'copper']), + ('Diverging', [ + 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', + 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']), + ('Qualitative', [ + 'Pastel1', 'Pastel2', 'Paired', 'Accent', + 'Dark2', 'Set1', 'Set2', 'Set3', + 'tab10', 'tab20', 'tab20b', 'tab20c']), + ('Miscellaneous', [ + 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', + 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv', + 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])] + + +nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps) +gradient = np.linspace(0, 1, 256) +gradient = np.vstack((gradient, gradient)) + + +def plot_color_gradients(cmap_category, cmap_list, nrows): + fig, axes = plt.subplots(nrows=nrows) + fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99) + axes[0].set_title(cmap_category + ' colormaps', fontsize=14) + + for ax, name in zip(axes, cmap_list): + ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name)) + pos = list(ax.get_position().bounds) + x_text = pos[0] - 0.01 + y_text = pos[1] + pos[3]/2. + fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10) + + # Turn off *all* ticks & spines, not just the ones with colormaps. + for ax in axes: + ax.set_axis_off() + + +for cmap_category, cmap_list in cmaps: + plot_color_gradients(cmap_category, cmap_list, nrows) + +plt.show()