Open
Description
Bug report
Bug summary
Generating np.random.randn(1000)
values, visualizing them with plt.hist()
. Works fine with Numpy.
When I replace Numpy with tensorflow.experimental.numpy, Matplotlib 3.3.4 fails to display the histogram correctly. Matplotlib 3.2.2 works fine.
Code for reproduction
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow.experimental.numpy as tnp
# bad image
labels1 = 15 + 2 * tnp.random.randn(1000)
_ = plt.hist(labels1)
# good image
labels2 = 15 + 2 * np.random.randn(1000)
_ = plt.hist(labels2)
Actual outcome
Expected outcome
Matplotlib version
- Operating system: Windows 10
- Matplotlib version (
import matplotlib; print(matplotlib.__version__)
): 3.3.4 - Matplotlib backend (
print(matplotlib.get_backend())
): module://ipykernel.pylab.backend_inline - Python version: 3.8.7
- Jupyter version (if applicable): see below
- Other libraries: see below
TensorFlow 2.4.1
jupyter --version
jupyter core : 4.7.0
jupyter-notebook : 6.1.6
qtconsole : 5.0.1
ipython : 7.20.0
ipykernel : 5.4.2
jupyter client : 6.1.7
jupyter lab : not installed
nbconvert : 6.0.7
ipywidgets : 7.6.3
nbformat : 5.0.8
traitlets : 5.0.5
Python installed from python.org as an exe installer. Everything else is pip install --user
Bug opened with TensorFlow on this same issue: