Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit a62cead

Browse filesBrowse files
authored
Merge pull request #11564 from anntzer/cleantri
triinterpolate cleanups.
2 parents 4100e90 + 1039c71 commit a62cead
Copy full SHA for a62cead

File tree

Expand file treeCollapse file tree

1 file changed

+9
-24
lines changed
Filter options
Expand file treeCollapse file tree

1 file changed

+9
-24
lines changed

‎lib/matplotlib/tri/triinterpolate.py

Copy file name to clipboardExpand all lines: lib/matplotlib/tri/triinterpolate.py
+9-24Lines changed: 9 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ def __init__(self, triangulation, z, trifinder=None):
8282
8383
"""
8484

85-
_docstringgradient = """
85+
_docstringgradient = r"""
8686
Returns a list of 2 masked arrays containing interpolated derivatives
8787
at the specified x,y points.
8888
@@ -99,8 +99,8 @@ def __init__(self, triangulation, z, trifinder=None):
9999
corresponding to (x,y) points outside of the triangulation
100100
are masked out.
101101
The first returned array contains the values of
102-
:math:`\\frac{\\partial z}{\\partial x}` and the second those of
103-
:math:`\\frac{\\partial z}{\\partial y}`.
102+
:math:`\frac{\partial z}{\partial x}` and the second those of
103+
:math:`\frac{\partial z}{\partial y}`.
104104
105105
"""
106106

@@ -292,7 +292,7 @@ def _interpolate_single_key(self, return_key, tri_index, x, y):
292292

293293

294294
class CubicTriInterpolator(TriInterpolator):
295-
"""
295+
r"""
296296
A CubicTriInterpolator performs cubic interpolation on triangular grids.
297297
298298
In one-dimension - on a segment - a cubic interpolating function is
@@ -367,11 +367,11 @@ class CubicTriInterpolator(TriInterpolator):
367367
368368
.. math::
369369
370-
E(z) = \\ \\frac{1}{2} \\int_{\\Omega} \\left(
371-
\\left( \\frac{\\partial^2{z}}{\\partial{x}^2} \\right)^2 +
372-
\\left( \\frac{\\partial^2{z}}{\\partial{y}^2} \\right)^2 +
373-
2\\left( \\frac{\\partial^2{z}}{\\partial{y}\\partial{x}}
374-
\\right)^2 \\right) dx\\,dy
370+
E(z) = \frac{1}{2} \int_{\Omega} \left(
371+
\left( \frac{\partial^2{z}}{\partial{x}^2} \right)^2 +
372+
\left( \frac{\partial^2{z}}{\partial{y}^2} \right)^2 +
373+
2\left( \frac{\partial^2{z}}{\partial{y}\partial{x}} \right)^2
374+
\right) dx\,dy
375375
376376
If the case *kind* ='geom' is chosen by the user, a simple geometric
377377
approximation is used (weighted average of the triangle normal
@@ -1376,7 +1376,6 @@ def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000):
13761376

13771377

13781378
# The following private functions:
1379-
# :func:`_inv22_vectorized`
13801379
# :func:`_safe_inv22_vectorized`
13811380
# :func:`_pseudo_inv22sym_vectorized`
13821381
# :func:`_prod_vectorized`
@@ -1387,20 +1386,6 @@ def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000):
13871386
# :func:`_extract_submatrices`
13881387
# provide fast numpy implementation of some standard operations on arrays of
13891388
# matrices - stored as (:, n_rows, n_cols)-shaped np.arrays.
1390-
def _inv22_vectorized(M):
1391-
"""
1392-
Inversion of arrays of (2,2) matrices.
1393-
"""
1394-
assert (M.ndim == 3)
1395-
assert (M.shape[-2:] == (2, 2))
1396-
M_inv = np.empty_like(M)
1397-
delta_inv = np.reciprocal(M[:, 0, 0]*M[:, 1, 1] - M[:, 0, 1]*M[:, 1, 0])
1398-
M_inv[:, 0, 0] = M[:, 1, 1]*delta_inv
1399-
M_inv[:, 0, 1] = -M[:, 0, 1]*delta_inv
1400-
M_inv[:, 1, 0] = -M[:, 1, 0]*delta_inv
1401-
M_inv[:, 1, 1] = M[:, 0, 0]*delta_inv
1402-
return M_inv
1403-
14041389

14051390
# Development note: Dealing with pathologic 'flat' triangles in the
14061391
# CubicTriInterpolator code and impact on (2,2)-matrix inversion functions

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.