Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 9a84637

Browse filesBrowse files
Merge pull request #2 from matplotlib/master
doc
2 parents 539d8b8 + 2208665 commit 9a84637
Copy full SHA for 9a84637

File tree

3 files changed

+50
-94
lines changed
Filter options

3 files changed

+50
-94
lines changed

‎examples/animation/random_walk.py

Copy file name to clipboardExpand all lines: examples/animation/random_walk.py
+11-12Lines changed: 11 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -7,31 +7,29 @@
77

88
import numpy as np
99
import matplotlib.pyplot as plt
10-
import mpl_toolkits.mplot3d.axes3d as p3
1110
import matplotlib.animation as animation
1211

1312
# Fixing random state for reproducibility
1413
np.random.seed(19680801)
1514

1615

17-
def Gen_RandLine(length, dims=2):
16+
def gen_rand_line(length, dims=2):
1817
"""
1918
Create a line using a random walk algorithm
2019
2120
length is the number of points for the line.
2221
dims is the number of dimensions the line has.
2322
"""
24-
lineData = np.empty((dims, length))
25-
lineData[:, 0] = np.random.rand(dims)
23+
line_data = np.empty((dims, length))
24+
line_data[:, 0] = np.random.rand(dims)
2625
for index in range(1, length):
2726
# scaling the random numbers by 0.1 so
2827
# movement is small compared to position.
2928
# subtraction by 0.5 is to change the range to [-0.5, 0.5]
3029
# to allow a line to move backwards.
31-
step = ((np.random.rand(dims) - 0.5) * 0.1)
32-
lineData[:, index] = lineData[:, index - 1] + step
33-
34-
return lineData
30+
step = (np.random.rand(dims) - 0.5) * 0.1
31+
line_data[:, index] = line_data[:, index - 1] + step
32+
return line_data
3533

3634

3735
def update_lines(num, dataLines, lines):
@@ -41,12 +39,13 @@ def update_lines(num, dataLines, lines):
4139
line.set_3d_properties(data[2, :num])
4240
return lines
4341

42+
4443
# Attaching 3D axis to the figure
4544
fig = plt.figure()
46-
ax = p3.Axes3D(fig)
45+
ax = fig.add_subplot(projection="3d")
4746

4847
# Fifty lines of random 3-D lines
49-
data = [Gen_RandLine(25, 3) for index in range(50)]
48+
data = [gen_rand_line(25, 3) for index in range(50)]
5049

5150
# Creating fifty line objects.
5251
# NOTE: Can't pass empty arrays into 3d version of plot()
@@ -65,7 +64,7 @@ def update_lines(num, dataLines, lines):
6564
ax.set_title('3D Test')
6665

6766
# Creating the Animation object
68-
line_ani = animation.FuncAnimation(fig, update_lines, 25, fargs=(data, lines),
69-
interval=50, blit=False)
67+
line_ani = animation.FuncAnimation(
68+
fig, update_lines, 25, fargs=(data, lines), interval=50)
7069

7170
plt.show()

‎lib/matplotlib/units.py

Copy file name to clipboardExpand all lines: lib/matplotlib/units.py
+30-70Lines changed: 30 additions & 70 deletions
Original file line numberDiff line numberDiff line change
@@ -55,9 +55,10 @@ class ConversionError(TypeError):
5555

5656
class AxisInfo(object):
5757
"""
58-
Information to support default axis labeling, tick labeling, and
59-
default limits. An instance of this class must be returned by
60-
:meth:`ConversionInterface.axisinfo`.
58+
Information to support default axis labeling, tick labeling, and limits.
59+
60+
An instance of this class must be returned by
61+
`ConversionInterface.axisinfo`.
6162
"""
6263
def __init__(self, majloc=None, minloc=None,
6364
majfmt=None, minfmt=None, label=None,
@@ -96,8 +97,7 @@ class ConversionInterface(object):
9697
@staticmethod
9798
def axisinfo(unit, axis):
9899
"""
99-
Return an `~units.AxisInfo` instance for the axis with the
100-
specified units.
100+
Return an `~units.AxisInfo` for the axis with the specified units.
101101
"""
102102
return None
103103

@@ -112,19 +112,19 @@ def default_units(x, axis):
112112
def convert(obj, unit, axis):
113113
"""
114114
Convert *obj* using *unit* for the specified *axis*.
115-
If *obj* is a sequence, return the converted sequence.
116-
The output must be a sequence of scalars that can be used by the numpy
117-
array layer.
115+
116+
If *obj* is a sequence, return the converted sequence. The output must
117+
be a sequence of scalars that can be used by the numpy array layer.
118118
"""
119119
return obj
120120

121121
@staticmethod
122122
def is_numlike(x):
123123
"""
124-
The Matplotlib datalim, autoscaling, locators etc work with
125-
scalars which are the units converted to floats given the
126-
current unit. The converter may be passed these floats, or
127-
arrays of them, even when units are set.
124+
The Matplotlib datalim, autoscaling, locators etc work with scalars
125+
which are the units converted to floats given the current unit. The
126+
converter may be passed these floats, or arrays of them, even when
127+
units are set.
128128
"""
129129
if np.iterable(x):
130130
for thisx in x:
@@ -134,73 +134,33 @@ def is_numlike(x):
134134

135135

136136
class Registry(dict):
137-
"""
138-
A register that maps types to conversion interfaces.
139-
"""
140-
def __init__(self):
141-
dict.__init__(self)
142-
self._cached = {}
137+
"""Register types with conversion interface."""
143138

144139
def get_converter(self, x):
145-
"""
146-
Get the converter for data that has the same type as *x*. If no
147-
converters are registered for *x*, returns ``None``.
148-
"""
149-
150-
if not len(self):
151-
return None # nothing registered
152-
# DISABLED idx = id(x)
153-
# DISABLED cached = self._cached.get(idx)
154-
# DISABLED if cached is not None: return cached
155-
156-
converter = None
157-
classx = getattr(x, '__class__', None)
158-
159-
if classx is not None:
160-
converter = self.get(classx)
161-
162-
if converter is None and hasattr(x, "values"):
163-
# this unpacks pandas series or dataframes...
164-
x = x.values
165-
166-
# If x is an array, look inside the array for data with units
140+
"""Get the converter interface instance for *x*, or None."""
141+
if hasattr(x, "values"):
142+
x = x.values # Unpack pandas Series and DataFrames.
167143
if isinstance(x, np.ndarray):
144+
# In case x in a masked array, access the underlying data (only its
145+
# type matters). If x is a regular ndarray, getdata() just returns
146+
# the array itself.
147+
x = np.ma.getdata(x).ravel()
168148
# If there are no elements in x, infer the units from its dtype
169149
if not x.size:
170150
return self.get_converter(np.array([0], dtype=x.dtype))
171-
xravel = x.ravel()
172-
try:
173-
# pass the first value of x that is not masked back to
174-
# get_converter
175-
if not np.all(xravel.mask):
176-
# Get first non-masked item
177-
converter = self.get_converter(
178-
xravel[np.argmin(xravel.mask)])
179-
return converter
180-
except AttributeError:
181-
# not a masked_array
182-
# Make sure we don't recurse forever -- it's possible for
183-
# ndarray subclasses to continue to return subclasses and
184-
# not ever return a non-subclass for a single element.
185-
next_item = xravel[0]
186-
if (not isinstance(next_item, np.ndarray) or
187-
next_item.shape != x.shape):
188-
converter = self.get_converter(next_item)
189-
return converter
190-
191-
# If we haven't found a converter yet, try to get the first element
192-
if converter is None:
193-
try:
194-
thisx = cbook.safe_first_element(x)
151+
try: # Look up in the cache.
152+
return self[type(x)]
153+
except KeyError:
154+
try: # If cache lookup fails, look up based on first element...
155+
first = cbook.safe_first_element(x)
195156
except (TypeError, StopIteration):
196157
pass
197158
else:
198-
if classx and classx != getattr(thisx, '__class__', None):
199-
converter = self.get_converter(thisx)
200-
return converter
201-
202-
# DISABLED self._cached[idx] = converter
203-
return converter
159+
# ... and avoid infinite recursion for pathological iterables
160+
# where indexing returns instances of the same iterable class.
161+
if type(first) is not type(x):
162+
return self.get_converter(first)
163+
return None
204164

205165

206166
registry = Registry()

‎tutorials/toolkits/mplot3d.py

Copy file name to clipboardExpand all lines: tutorials/toolkits/mplot3d.py
+9-12Lines changed: 9 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -14,24 +14,21 @@
1414
1515
Getting started
1616
---------------
17-
An Axes3D object is created just like any other axes using
18-
the projection='3d' keyword.
19-
Create a new :class:`matplotlib.figure.Figure` and
20-
add a new axes to it of type :class:`~mpl_toolkits.mplot3d.Axes3D`::
17+
3D Axes (of class `Axes3D`) are created by passing the ``projection="3d"``
18+
keyword argument to `Figure.add_subplot`::
2119
2220
import matplotlib.pyplot as plt
23-
from mpl_toolkits.mplot3d import Axes3D
2421
fig = plt.figure()
2522
ax = fig.add_subplot(111, projection='3d')
2623
27-
.. versionadded:: 1.0.0
28-
This approach is the preferred method of creating a 3D axes.
24+
.. versionchanged:: 1.0.0
25+
Prior to Matplotlib 1.0.0, `Axes3D` needed to be directly instantiated with
26+
``from mpl_toolkits.mplot3d import Axes3D; ax = Axes3D(fig)``.
2927
30-
.. note::
31-
Prior to version 1.0.0, the method of creating a 3D axes was
32-
different. For those using older versions of matplotlib, change
33-
``ax = fig.add_subplot(111, projection='3d')``
34-
to ``ax = Axes3D(fig)``.
28+
.. versionchanged:: 3.2.0
29+
Prior to Matplotlib 3.2.0, it was necessary to explicitly import the
30+
:mod:`mpl_toolkits.mplot3d` module to make the '3d' projection to
31+
`Figure.add_subplot`.
3532
3633
See the :ref:`toolkit_mplot3d-faq` for more information about the mplot3d
3734
toolkit.

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.