Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 95f7818

Browse filesBrowse files
authored
Merge pull request #14729 from anntzer/moresimple
Small simplifications.
2 parents ab9fe2f + 7b2cb35 commit 95f7818
Copy full SHA for 95f7818

File tree

Expand file treeCollapse file tree

4 files changed

+11
-18
lines changed
Filter options
Expand file treeCollapse file tree

4 files changed

+11
-18
lines changed

‎lib/matplotlib/lines.py

Copy file name to clipboardExpand all lines: lib/matplotlib/lines.py
+3-7Lines changed: 3 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -163,15 +163,11 @@ def _slice_or_none(in_v, slc):
163163
delta = np.empty((len(disp_coords), 2))
164164
delta[0, :] = 0
165165
delta[1:, :] = disp_coords[1:, :] - disp_coords[:-1, :]
166-
delta = np.sum(delta**2, axis=1)
167-
delta = np.sqrt(delta)
168-
delta = np.cumsum(delta)
166+
delta = np.hypot(*delta.T).cumsum()
169167
# calc distance between markers along path based on the axes
170168
# bounding box diagonal being a distance of unity:
171-
scale = ax_transform.transform(np.array([[0, 0], [1, 1]]))
172-
scale = np.diff(scale, axis=0)
173-
scale = np.sum(scale**2)
174-
scale = np.sqrt(scale)
169+
(x0, y0), (x1, y1) = ax_transform.transform([[0, 0], [1, 1]])
170+
scale = np.hypot(x1 - x0, y1 - y0)
175171
marker_delta = np.arange(start * scale, delta[-1], step * scale)
176172
# find closest actual data point that is closest to
177173
# the theoretical distance along the path:

‎lib/matplotlib/mlab.py

Copy file name to clipboardExpand all lines: lib/matplotlib/mlab.py
+2-3Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1484,9 +1484,8 @@ def __init__(self, dataset, bw_method=None):
14841484

14851485
self.covariance = self.data_covariance * self.factor ** 2
14861486
self.inv_cov = self.data_inv_cov / self.factor ** 2
1487-
self.norm_factor = np.sqrt(
1488-
np.linalg.det(
1489-
2 * np.pi * self.covariance)) * self.num_dp
1487+
self.norm_factor = (np.sqrt(np.linalg.det(2 * np.pi * self.covariance))
1488+
* self.num_dp)
14901489

14911490
def scotts_factor(self):
14921491
return np.power(self.num_dp, -1. / (self.dim + 4))

‎lib/matplotlib/tests/test_collections.py

Copy file name to clipboardExpand all lines: lib/matplotlib/tests/test_collections.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -691,7 +691,7 @@ def test_pathcollection_legend_elements():
691691
l3 = ax.legend(h, l, loc=4)
692692

693693
h, l = sc.legend_elements(prop="sizes", num=4, fmt="{x:.2f}",
694-
func=lambda x: 2*x)
694+
func=lambda x: 2*x)
695695
actsizes = [line.get_markersize() for line in h]
696696
labeledsizes = np.sqrt(np.array(l).astype(float)/2)
697697
assert_array_almost_equal(actsizes, labeledsizes)

‎lib/matplotlib/widgets.py

Copy file name to clipboardExpand all lines: lib/matplotlib/widgets.py
+5-7Lines changed: 5 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1967,15 +1967,13 @@ def set_animated(self, val):
19671967

19681968
def closest(self, x, y):
19691969
"""Return index and pixel distance to closest index."""
1970-
pts = np.transpose((self.x, self.y))
1970+
pts = np.column_stack([self.x, self.y])
19711971
# Transform data coordinates to pixel coordinates.
19721972
pts = self.ax.transData.transform(pts)
1973-
diff = pts - ((x, y))
1974-
if diff.ndim == 2:
1975-
dist = np.sqrt(np.sum(diff ** 2, axis=1))
1976-
return np.argmin(dist), np.min(dist)
1977-
else:
1978-
return 0, np.sqrt(np.sum(diff ** 2))
1973+
diff = pts - [x, y]
1974+
dist = np.hypot(*diff.T)
1975+
min_index = np.argmin(dist)
1976+
return min_index, dist[min_index]
19791977

19801978

19811979
class RectangleSelector(_SelectorWidget):

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.