Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 401aa2f

Browse filesBrowse files
authored
Merge pull request #20309 from QuLogic/example-kwargs
DOC: Spell out args/kwargs in examples/tutorials
2 parents 81436da + 203f8a0 commit 401aa2f
Copy full SHA for 401aa2f

File tree

Expand file treeCollapse file tree

27 files changed

+97
-99
lines changed
Filter options
Expand file treeCollapse file tree

27 files changed

+97
-99
lines changed

‎examples/images_contours_and_fields/contourf_demo.py

Copy file name to clipboardExpand all lines: examples/images_contours_and_fields/contourf_demo.py
+4-4Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -41,10 +41,10 @@
4141
fig1, ax2 = plt.subplots(constrained_layout=True)
4242
CS = ax2.contourf(X, Y, Z, 10, cmap=plt.cm.bone, origin=origin)
4343

44-
# Note that in the following, we explicitly pass in a subset of
45-
# the contour levels used for the filled contours. Alternatively,
46-
# We could pass in additional levels to provide extra resolution,
47-
# or leave out the levels kwarg to use all of the original levels.
44+
# Note that in the following, we explicitly pass in a subset of the contour
45+
# levels used for the filled contours. Alternatively, we could pass in
46+
# additional levels to provide extra resolution, or leave out the *levels*
47+
# keyword argument to use all of the original levels.
4848

4949
CS2 = ax2.contour(CS, levels=CS.levels[::2], colors='r', origin=origin)
5050

‎examples/images_contours_and_fields/tripcolor_demo.py

Copy file name to clipboardExpand all lines: examples/images_contours_and_fields/tripcolor_demo.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@
113113
# object if the same triangulation was to be used more than once to save
114114
# duplicated calculations.
115115
# Can specify one color value per face rather than one per point by using the
116-
# facecolors kwarg.
116+
# *facecolors* keyword argument.
117117

118118
fig3, ax3 = plt.subplots()
119119
ax3.set_aspect('equal')

‎examples/lines_bars_and_markers/filled_step.py

Copy file name to clipboardExpand all lines: examples/lines_bars_and_markers/filled_step.py
+10-9Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -20,8 +20,6 @@ def filled_hist(ax, edges, values, bottoms=None, orientation='v',
2020
"""
2121
Draw a histogram as a stepped patch.
2222
23-
Extra kwargs are passed through to `fill_between`
24-
2523
Parameters
2624
----------
2725
ax : Axes
@@ -41,6 +39,9 @@ def filled_hist(ax, edges, values, bottoms=None, orientation='v',
4139
Orientation of the histogram. 'v' (default) has
4240
the bars increasing in the positive y-direction.
4341
42+
**kwargs
43+
Extra keyword arguments are passed through to `.fill_between`.
44+
4445
Returns
4546
-------
4647
ret : PolyCollection
@@ -103,11 +104,11 @@ def stack_hist(ax, stacked_data, sty_cycle, bottoms=None,
103104
104105
If not given and stacked data is an array defaults to 'default set {n}'
105106
106-
If stacked_data is a mapping, and labels is None, default to the keys
107-
(which may come out in a random order).
107+
If *stacked_data* is a mapping, and *labels* is None, default to the
108+
keys.
108109
109-
If stacked_data is a mapping and labels is given then only
110-
the columns listed by be plotted.
110+
If *stacked_data* is a mapping and *labels* is given then only the
111+
columns listed will be plotted.
111112
112113
plot_func : callable, optional
113114
Function to call to draw the histogram must have signature:
@@ -116,9 +117,9 @@ def stack_hist(ax, stacked_data, sty_cycle, bottoms=None,
116117
label=label, **kwargs)
117118
118119
plot_kwargs : dict, optional
119-
Any extra kwargs to pass through to the plotting function. This
120-
will be the same for all calls to the plotting function and will
121-
over-ride the values in cycle.
120+
Any extra keyword arguments to pass through to the plotting function.
121+
This will be the same for all calls to the plotting function and will
122+
override the values in *sty_cycle*.
122123
123124
Returns
124125
-------

‎examples/lines_bars_and_markers/gradient_bar.py

Copy file name to clipboardExpand all lines: examples/lines_bars_and_markers/gradient_bar.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ def gradient_image(ax, extent, direction=0.3, cmap_range=(0, 1), **kwargs):
3434
extent
3535
The extent of the image as (xmin, xmax, ymin, ymax).
3636
By default, this is in Axes coordinates but may be
37-
changed using the *transform* kwarg.
37+
changed using the *transform* keyword argument.
3838
direction : float
3939
The direction of the gradient. This is a number in
4040
range 0 (=vertical) to 1 (=horizontal).

‎examples/shapes_and_collections/collections.py

Copy file name to clipboardExpand all lines: examples/shapes_and_collections/collections.py
+5-6Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -3,11 +3,10 @@
33
Line, Poly and RegularPoly Collection with autoscaling
44
=========================================================
55
6-
For the first two subplots, we will use spirals. Their
7-
size will be set in plot units, not data units. Their positions
8-
will be set in data units by using the "offsets" and "transOffset"
9-
kwargs of the `~.collections.LineCollection` and
10-
`~.collections.PolyCollection`.
6+
For the first two subplots, we will use spirals. Their size will be set in
7+
plot units, not data units. Their positions will be set in data units by using
8+
the *offsets* and *transOffset* keyword arguments of the `.LineCollection` and
9+
`.PolyCollection`.
1110
1211
The third subplot will make regular polygons, with the same
1312
type of scaling and positioning as in the first two.
@@ -60,7 +59,7 @@
6059
# but it is good enough to generate a plot that you can use
6160
# as a starting point. If you know beforehand the range of
6261
# x and y that you want to show, it is better to set them
63-
# explicitly, leave out the autolim kwarg (or set it to False),
62+
# explicitly, leave out the *autolim* keyword argument (or set it to False),
6463
# and omit the 'ax1.autoscale_view()' call below.
6564

6665
# Make a transform for the line segments such that their size is

‎examples/specialty_plots/topographic_hillshading.py

Copy file name to clipboardExpand all lines: examples/specialty_plots/topographic_hillshading.py
+2-2Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@
1313
In most cases, hillshading is used purely for visual purposes, and *dx*/*dy*
1414
can be safely ignored. In that case, you can tweak *vert_exag* (vertical
1515
exaggeration) by trial and error to give the desired visual effect. However,
16-
this example demonstrates how to use the *dx* and *dy* kwargs to ensure that
17-
the *vert_exag* parameter is the true vertical exaggeration.
16+
this example demonstrates how to use the *dx* and *dy* keyword arguments to
17+
ensure that the *vert_exag* parameter is the true vertical exaggeration.
1818
"""
1919
import numpy as np
2020
import matplotlib.pyplot as plt

‎examples/statistics/boxplot.py

Copy file name to clipboardExpand all lines: examples/statistics/boxplot.py
+9-10Lines changed: 9 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -3,16 +3,15 @@
33
Artist customization in box plots
44
=================================
55
6-
This example demonstrates how to use the various kwargs
7-
to fully customize box plots. The first figure demonstrates
8-
how to remove and add individual components (note that the
9-
mean is the only value not shown by default). The second
10-
figure demonstrates how the styles of the artists can
11-
be customized. It also demonstrates how to set the limit
12-
of the whiskers to specific percentiles (lower right axes)
13-
14-
A good general reference on boxplots and their history can be found
15-
here: http://vita.had.co.nz/papers/boxplots.pdf
6+
This example demonstrates how to use the various keyword arguments to fully
7+
customize box plots. The first figure demonstrates how to remove and add
8+
individual components (note that the mean is the only value not shown by
9+
default). The second figure demonstrates how the styles of the artists can be
10+
customized. It also demonstrates how to set the limit of the whiskers to
11+
specific percentiles (lower right axes)
12+
13+
A good general reference on boxplots and their history can be found here:
14+
https://vita.had.co.nz/papers/boxplots.pdf
1615
1716
"""
1817

‎examples/statistics/confidence_ellipse.py

Copy file name to clipboardExpand all lines: examples/statistics/confidence_ellipse.py
+2-2Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -190,7 +190,7 @@ def get_correlated_dataset(n, dependency, mu, scale):
190190
# Using the keyword arguments
191191
# """""""""""""""""""""""""""
192192
#
193-
# Use the kwargs specified for matplotlib.patches.Patch in order
193+
# Use the keyword arguments specified for `matplotlib.patches.Patch` in order
194194
# to have the ellipse rendered in different ways.
195195

196196
fig, ax_kwargs = plt.subplots(figsize=(6, 6))
@@ -210,7 +210,7 @@ def get_correlated_dataset(n, dependency, mu, scale):
210210

211211
ax_kwargs.scatter(x, y, s=0.5)
212212
ax_kwargs.scatter(mu[0], mu[1], c='red', s=3)
213-
ax_kwargs.set_title('Using kwargs')
213+
ax_kwargs.set_title('Using keyword arguments')
214214

215215
fig.subplots_adjust(hspace=0.25)
216216
plt.show()

‎examples/statistics/customized_violin.py

Copy file name to clipboardExpand all lines: examples/statistics/customized_violin.py
+5-6Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -3,12 +3,11 @@
33
Violin plot customization
44
=========================
55
6-
This example demonstrates how to fully customize violin plots.
7-
The first plot shows the default style by providing only
8-
the data. The second plot first limits what matplotlib draws
9-
with additional kwargs. Then a simplified representation of
10-
a box plot is drawn on top. Lastly, the styles of the artists
11-
of the violins are modified.
6+
This example demonstrates how to fully customize violin plots. The first plot
7+
shows the default style by providing only the data. The second plot first
8+
limits what Matplotlib draws with additional keyword arguments. Then a
9+
simplified representation of a box plot is drawn on top. Lastly, the styles of
10+
the artists of the violins are modified.
1211
1312
For more information on violin plots, the scikit-learn docs have a great
1413
section: https://scikit-learn.org/stable/modules/density.html

‎examples/statistics/errorbars_and_boxes.py

Copy file name to clipboardExpand all lines: examples/statistics/errorbars_and_boxes.py
+3-3Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -12,9 +12,9 @@
1212
1. an `~.axes.Axes` object is passed directly to the function
1313
2. the function operates on the ``Axes`` methods directly, not through
1414
the ``pyplot`` interface
15-
3. plotting kwargs that could be abbreviated are spelled out for
16-
better code readability in the future (for example we use
17-
``facecolor`` instead of ``fc``)
15+
3. plotting keyword arguments that could be abbreviated are spelled out for
16+
better code readability in the future (for example we use *facecolor*
17+
instead of *fc*)
1818
4. the artists returned by the ``Axes`` plotting methods are then
1919
returned by the function so that, if desired, their styles
2020
can be modified later outside of the function (they are not

‎examples/statistics/hist.py

Copy file name to clipboardExpand all lines: examples/statistics/hist.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@
3232

3333
fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True)
3434

35-
# We can set the number of bins with the `bins` kwarg
35+
# We can set the number of bins with the *bins* keyword argument.
3636
axs[0].hist(x, bins=n_bins)
3737
axs[1].hist(y, bins=n_bins)
3838

‎examples/statistics/histogram_cumulative.py

Copy file name to clipboardExpand all lines: examples/statistics/histogram_cumulative.py
+7-8Lines changed: 7 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -7,14 +7,13 @@
77
step function in order to visualize the empirical cumulative
88
distribution function (CDF) of a sample. We also show the theoretical CDF.
99
10-
A couple of other options to the ``hist`` function are demonstrated.
11-
Namely, we use the ``normed`` parameter to normalize the histogram and
12-
a couple of different options to the ``cumulative`` parameter.
13-
The ``normed`` parameter takes a boolean value. When ``True``, the bin
14-
heights are scaled such that the total area of the histogram is 1. The
15-
``cumulative`` kwarg is a little more nuanced. Like ``normed``, you
16-
can pass it True or False, but you can also pass it -1 to reverse the
17-
distribution.
10+
A couple of other options to the ``hist`` function are demonstrated. Namely, we
11+
use the *normed* parameter to normalize the histogram and a couple of different
12+
options to the *cumulative* parameter. The *normed* parameter takes a boolean
13+
value. When ``True``, the bin heights are scaled such that the total area of
14+
the histogram is 1. The *cumulative* keyword argument is a little more nuanced.
15+
Like *normed*, you can pass it True or False, but you can also pass it -1 to
16+
reverse the distribution.
1817
1918
Since we're showing a normalized and cumulative histogram, these curves
2019
are effectively the cumulative distribution functions (CDFs) of the

‎examples/subplots_axes_and_figures/secondary_axis.py

Copy file name to clipboardExpand all lines: examples/subplots_axes_and_figures/secondary_axis.py
+4-4Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
axes with only one axis visible via `.axes.Axes.secondary_xaxis` and
99
`.axes.Axes.secondary_yaxis`. This secondary axis can have a different scale
1010
than the main axis by providing both a forward and an inverse conversion
11-
function in a tuple to the ``functions`` kwarg:
11+
function in a tuple to the *functions* keyword argument:
1212
"""
1313

1414
import matplotlib.pyplot as plt
@@ -87,9 +87,9 @@ def one_over(x):
8787
# nominal plot limits.
8888
#
8989
# In the specific case of the numpy linear interpolation, `numpy.interp`,
90-
# this condition can be arbitrarily enforced by providing optional kwargs
91-
# *left*, *right* such that values outside the data range are mapped
92-
# well outside the plot limits.
90+
# this condition can be arbitrarily enforced by providing optional keyword
91+
# arguments *left*, *right* such that values outside the data range are
92+
# mapped well outside the plot limits.
9393

9494
fig, ax = plt.subplots(constrained_layout=True)
9595
xdata = np.arange(1, 11, 0.4)

‎examples/text_labels_and_annotations/annotation_demo.py

Copy file name to clipboardExpand all lines: examples/text_labels_and_annotations/annotation_demo.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -107,7 +107,7 @@
107107
# In the example below, the *xy* point is in native coordinates (*xycoords*
108108
# defaults to 'data'). For a polar axes, this is in (theta, radius) space.
109109
# The text in the example is placed in the fractional figure coordinate system.
110-
# Text keyword args like horizontal and vertical alignment are respected.
110+
# Text keyword arguments like horizontal and vertical alignment are respected.
111111

112112
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'), figsize=(3, 3))
113113
r = np.arange(0, 1, 0.001)

‎examples/text_labels_and_annotations/fonts_demo.py

Copy file name to clipboardExpand all lines: examples/text_labels_and_annotations/fonts_demo.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
66
Set font properties using setters.
77
8-
See :doc:`fonts_demo_kw` to achieve the same effect using kwargs.
8+
See :doc:`fonts_demo_kw` to achieve the same effect using keyword arguments.
99
"""
1010

1111
from matplotlib.font_manager import FontProperties

‎examples/text_labels_and_annotations/fonts_demo_kw.py

Copy file name to clipboardExpand all lines: examples/text_labels_and_annotations/fonts_demo_kw.py
+4-4Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
"""
2-
===================
3-
Fonts demo (kwargs)
4-
===================
2+
==============================
3+
Fonts demo (keyword arguments)
4+
==============================
55
6-
Set font properties using kwargs.
6+
Set font properties using keyword arguments.
77
88
See :doc:`fonts_demo` to achieve the same effect using setters.
99
"""

‎examples/text_labels_and_annotations/titles_demo.py

Copy file name to clipboardExpand all lines: examples/text_labels_and_annotations/titles_demo.py
+2-2Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -38,8 +38,8 @@
3838
plt.show()
3939

4040
###########################################################################
41-
# Automatic positioning can be turned off by manually specifying the
42-
# *y* kwarg for the title or setting :rc:`axes.titley` in the rcParams.
41+
# Automatic positioning can be turned off by manually specifying the *y*
42+
# keyword argument for the title or setting :rc:`axes.titley` in the rcParams.
4343

4444
fig, axs = plt.subplots(1, 2, constrained_layout=True)
4545

‎examples/ticks_and_spines/custom_ticker1.py

Copy file name to clipboardExpand all lines: examples/ticks_and_spines/custom_ticker1.py
+1-1Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818

1919
def millions(x, pos):
20-
"""The two args are the value and tick position."""
20+
"""The two arguments are the value and tick position."""
2121
return '${:1.1f}M'.format(x*1e-6)
2222

2323
fig, ax = plt.subplots()

‎examples/ticks_and_spines/date_concise_formatter.py

Copy file name to clipboardExpand all lines: examples/ticks_and_spines/date_concise_formatter.py
+3-3Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@
101101
# limits are mostly hours, we label Feb 4 00:00 as simply "Feb-4".
102102
#
103103
# Note that these format lists can also be passed to `.ConciseDateFormatter`
104-
# as optional kwargs.
104+
# as optional keyword arguments.
105105
#
106106
# Here we modify the labels to be "day month year", instead of the ISO
107107
# "year month day":
@@ -142,8 +142,8 @@
142142
# Registering a converter with localization
143143
# =========================================
144144
#
145-
# `.ConciseDateFormatter` doesn't have rcParams entries, but localization
146-
# can be accomplished by passing kwargs to `.ConciseDateConverter` and
145+
# `.ConciseDateFormatter` doesn't have rcParams entries, but localization can
146+
# be accomplished by passing keyword arguments to `.ConciseDateConverter` and
147147
# registering the datatypes you will use with the units registry:
148148

149149
import datetime

‎examples/units/basic_units.py

Copy file name to clipboardExpand all lines: examples/units/basic_units.py
+2-2Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -79,8 +79,8 @@ def __call__(self, *args):
7979
arg_units = [self.unit]
8080
for a in args:
8181
if hasattr(a, 'get_unit') and not hasattr(a, 'convert_to'):
82-
# if this arg has a unit type but no conversion ability,
83-
# this operation is prohibited
82+
# If this argument has a unit type but no conversion ability,
83+
# this operation is prohibited.
8484
return NotImplemented
8585

8686
if hasattr(a, 'convert_to'):

‎tutorials/intermediate/constrainedlayout_guide.py

Copy file name to clipboardExpand all lines: tutorials/intermediate/constrainedlayout_guide.py
+3-2Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,8 @@ def example_plot(ax, fontsize=12, hide_labels=False):
7979
# To prevent this, the location of axes needs to be adjusted. For
8080
# subplots, this can be done by adjusting the subplot params
8181
# (:ref:`howto-subplots-adjust`). However, specifying your figure with the
82-
# ``constrained_layout=True`` kwarg will do the adjusting automatically.
82+
# ``constrained_layout=True`` keyword argument will do the adjusting
83+
# automatically.
8384

8485
fig, ax = plt.subplots(constrained_layout=True)
8586
example_plot(ax, fontsize=24)
@@ -112,7 +113,7 @@ def example_plot(ax, fontsize=12, hide_labels=False):
112113
#
113114
# .. note::
114115
#
115-
# For the `~.axes.Axes.pcolormesh` kwargs (``pc_kwargs``) we use a
116+
# For the `~.axes.Axes.pcolormesh` keyword arguments (``pc_kwargs``) we use a
116117
# dictionary. Below we will assign one colorbar to a number of axes each
117118
# containing a `~.cm.ScalarMappable`; specifying the norm and colormap
118119
# ensures the colorbar is accurate for all the axes.

‎tutorials/intermediate/imshow_extent.py

Copy file name to clipboardExpand all lines: tutorials/intermediate/imshow_extent.py
+12-12Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -2,18 +2,18 @@
22
*origin* and *extent* in `~.Axes.imshow`
33
========================================
44
5-
:meth:`~.Axes.imshow` allows you to render an image (either a 2D array
6-
which will be color-mapped (based on *norm* and *cmap*) or a 3D RGB(A)
7-
array which will be used as-is) to a rectangular region in data space.
8-
The orientation of the image in the final rendering is controlled by
9-
the *origin* and *extent* kwargs (and attributes on the resulting
10-
`.AxesImage` instance) and the data limits of the axes.
11-
12-
The *extent* kwarg controls the bounding box in data coordinates that
13-
the image will fill specified as ``(left, right, bottom, top)`` in
14-
**data coordinates**, the *origin* kwarg controls how the image fills
15-
that bounding box, and the orientation in the final rendered image is
16-
also affected by the axes limits.
5+
:meth:`~.Axes.imshow` allows you to render an image (either a 2D array which
6+
will be color-mapped (based on *norm* and *cmap*) or a 3D RGB(A) array which
7+
will be used as-is) to a rectangular region in data space. The orientation of
8+
the image in the final rendering is controlled by the *origin* and *extent*
9+
keyword arguments (and attributes on the resulting `.AxesImage` instance) and
10+
the data limits of the axes.
11+
12+
The *extent* keyword arguments controls the bounding box in data coordinates
13+
that the image will fill specified as ``(left, right, bottom, top)`` in **data
14+
coordinates**, the *origin* keyword argument controls how the image fills that
15+
bounding box, and the orientation in the final rendered image is also affected
16+
by the axes limits.
1717
1818
.. hint:: Most of the code below is used for adding labels and informative
1919
text to the plots. The described effects of *origin* and *extent* can be

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.