Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 1a8e664

Browse filesBrowse files
authored
Merge pull request #29420 from meeseeksmachine/auto-backport-of-pr-29406-on-v3.10.x
Backport PR #29406 on branch v3.10.x (DOC: Update scales overview)
2 parents 19e4d4d + 05ebb73 commit 1a8e664
Copy full SHA for 1a8e664

File tree

2 files changed

+31
-71
lines changed
Filter options

2 files changed

+31
-71
lines changed

‎doc/sphinxext/gallery_order.py

Copy file name to clipboardExpand all lines: doc/sphinxext/gallery_order.py
+2Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -86,6 +86,8 @@ def __call__(self, item):
8686
"color_demo",
8787
# pies
8888
"pie_features", "pie_demo2",
89+
# scales
90+
"scales", # Scales overview
8991

9092
# **Plot Types
9193
# Basic

‎galleries/examples/scales/scales.py

Copy file name to clipboardExpand all lines: galleries/examples/scales/scales.py
+29-71Lines changed: 29 additions & 71 deletions
Original file line numberDiff line numberDiff line change
@@ -5,56 +5,42 @@
55
66
Illustrate the scale transformations applied to axes, e.g. log, symlog, logit.
77
8-
The last two examples are examples of using the ``'function'`` scale by
9-
supplying forward and inverse functions for the scale transformation.
8+
See `matplotlib.scale` for a full list of built-in scales, and
9+
:doc:`/gallery/scales/custom_scale` for how to create your own scale.
1010
"""
1111

1212
import matplotlib.pyplot as plt
1313
import numpy as np
1414

15-
from matplotlib.ticker import FixedLocator, NullFormatter
15+
x = np.arange(400)
16+
y = np.linspace(0.002, 1, 400)
1617

17-
# Fixing random state for reproducibility
18-
np.random.seed(19680801)
19-
20-
# make up some data in the interval ]0, 1[
21-
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
22-
y = y[(y > 0) & (y < 1)]
23-
y.sort()
24-
x = np.arange(len(y))
25-
26-
# plot with various axes scales
2718
fig, axs = plt.subplots(3, 2, figsize=(6, 8), layout='constrained')
2819

29-
# linear
30-
ax = axs[0, 0]
31-
ax.plot(x, y)
32-
ax.set_yscale('linear')
33-
ax.set_title('linear')
34-
ax.grid(True)
35-
20+
axs[0, 0].plot(x, y)
21+
axs[0, 0].set_yscale('linear')
22+
axs[0, 0].set_title('linear')
23+
axs[0, 0].grid(True)
3624

37-
# log
38-
ax = axs[0, 1]
39-
ax.plot(x, y)
40-
ax.set_yscale('log')
41-
ax.set_title('log')
42-
ax.grid(True)
25+
axs[0, 1].plot(x, y)
26+
axs[0, 1].set_yscale('log')
27+
axs[0, 1].set_title('log')
28+
axs[0, 1].grid(True)
4329

30+
axs[1, 0].plot(x, y - y.mean())
31+
axs[1, 0].set_yscale('symlog', linthresh=0.02)
32+
axs[1, 0].set_title('symlog')
33+
axs[1, 0].grid(True)
4434

45-
# symmetric log
46-
ax = axs[1, 1]
47-
ax.plot(x, y - y.mean())
48-
ax.set_yscale('symlog', linthresh=0.02)
49-
ax.set_title('symlog')
50-
ax.grid(True)
35+
axs[1, 1].plot(x, y)
36+
axs[1, 1].set_yscale('logit')
37+
axs[1, 1].set_title('logit')
38+
axs[1, 1].grid(True)
5139

52-
# logit
53-
ax = axs[1, 0]
54-
ax.plot(x, y)
55-
ax.set_yscale('logit')
56-
ax.set_title('logit')
57-
ax.grid(True)
40+
axs[2, 0].plot(x, y - y.mean())
41+
axs[2, 0].set_yscale('asinh', linear_width=0.01)
42+
axs[2, 0].set_title('asinh')
43+
axs[2, 0].grid(True)
5844

5945

6046
# Function x**(1/2)
@@ -66,38 +52,11 @@ def inverse(x):
6652
return x**2
6753

6854

69-
ax = axs[2, 0]
70-
ax.plot(x, y)
71-
ax.set_yscale('function', functions=(forward, inverse))
72-
ax.set_title('function: $x^{1/2}$')
73-
ax.grid(True)
74-
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 1, 0.2)**2))
75-
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 1, 0.2)))
76-
77-
78-
# Function Mercator transform
79-
def forward(a):
80-
a = np.deg2rad(a)
81-
return np.rad2deg(np.log(np.abs(np.tan(a) + 1.0 / np.cos(a))))
82-
83-
84-
def inverse(a):
85-
a = np.deg2rad(a)
86-
return np.rad2deg(np.arctan(np.sinh(a)))
87-
88-
ax = axs[2, 1]
89-
90-
t = np.arange(0, 170.0, 0.1)
91-
s = t / 2.
92-
93-
ax.plot(t, s, '-', lw=2)
94-
95-
ax.set_yscale('function', functions=(forward, inverse))
96-
ax.set_title('function: Mercator')
97-
ax.grid(True)
98-
ax.set_xlim([0, 180])
99-
ax.yaxis.set_minor_formatter(NullFormatter())
100-
ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 90, 10)))
55+
axs[2, 1].plot(x, y)
56+
axs[2, 1].set_yscale('function', functions=(forward, inverse))
57+
axs[2, 1].set_title('function: $x^{1/2}$')
58+
axs[2, 1].grid(True)
59+
axs[2, 1].set_yticks(np.arange(0, 1.2, 0.2))
10160

10261
plt.show()
10362

@@ -110,7 +69,6 @@ def inverse(a):
11069
#
11170
# - `matplotlib.axes.Axes.set_xscale`
11271
# - `matplotlib.axes.Axes.set_yscale`
113-
# - `matplotlib.axis.Axis.set_major_locator`
11472
# - `matplotlib.scale.LinearScale`
11573
# - `matplotlib.scale.LogScale`
11674
# - `matplotlib.scale.SymmetricalLogScale`

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.