Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings
/ RecSys Public

计算广告/推荐系统/机器学习(Machine Learning)/点击率(CTR)/转化率(CVR)预估/点击率预估

Notifications You must be signed in to change notification settings

mJackie/RecSys

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 

Repository files navigation

推荐系统/计算广告/机器学习/CTR预估资料汇总

License Update Progress SayThanks Travis

说明:本仓库主要汇集推荐系统/计算广告/机器学习/CTR预估相关学习资料,欢迎一起补充更新👼

更多前沿技术文章,欢迎移步 -> 精选文章

RoadMap


推荐系统


计算广告


统计学习模型

技术文章

实践工具


深度学习模型

技术文章

实践代码


相关比赛


技术博客


经典论文清单

筛选文章的标准:前沿或者经典的,工程导向的,google、阿里、facebook等一线互联网公司出品的

Wide & Deep Learning for Recommender Systems

google 的 wide&deep,必看论文,经典到难以附加

DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction

华为对wide&deep的改进,加了wide层的交叉项。如今工业界的主流模型

Practical lessons from predicting clicks on ads at facebook

facebook GBDT+LR的经典方案。虽然如今已不是主流方案,但论文中的思想很值得学习。

Deep Neural Networks for YouTube Recommendations

介绍了Youtube推荐系统工业界架构与方案,经典必看

Real-time Personalization using Embeddings for Search Ranking at Airbnb

KDD2018 best paper,Embedding 必看论文,非常经典

Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate

阿里的多目标学习经典方案,同时优化CTR & CVR

Real-time Personalization using Embeddings for Search Ranking at Airbnb

介绍了 airbnb 搜索排序模型的演进,工业性质很强,值得参考

搜索引擎点击模型综述

清华马少平团队的文章点击模型入门必看,搜索引擎点击模型综述

About

计算广告/推荐系统/机器学习(Machine Learning)/点击率(CTR)/转化率(CVR)预估/点击率预估

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
Morty Proxy This is a proxified and sanitized view of the page, visit original site.