-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir][vector] add unroll pattern for broadcast #142011
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
chencha3
wants to merge
3
commits into
main
Choose a base branch
from
users/chencha3/vector/vector_unroll_broadcast
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-mlir-vector @llvm/pr-subscribers-mlir Author: Chao Chen (chencha3) ChangesThis PR adds Full diff: https://github.com/llvm/llvm-project/pull/142011.diff 5 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
index 3f5564541554e..e50cb459b99ac 100644
--- a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
+++ b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
@@ -347,6 +347,7 @@ def Vector_MultiDimReductionOp :
def Vector_BroadcastOp :
Vector_Op<"broadcast", [Pure,
+ DeclareOpInterfaceMethods<VectorUnrollOpInterface, ["getShapeForUnroll"]>,
DeclareOpInterfaceMethods<InferIntRangeInterface, ["inferResultRanges"]>,
PredOpTrait<"source operand and result have same element type",
TCresVTEtIsSameAsOpBase<0, 0>>]>,
diff --git a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
index 41777347975da..4487590bcb9b7 100644
--- a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
+++ b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp
@@ -2401,6 +2401,10 @@ void BroadcastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
setResultRanges(getResult(), argRanges.front());
}
+std::optional<SmallVector<int64_t, 4>> BroadcastOp::getShapeForUnroll() {
+ return llvm::to_vector<4>(getResultVectorType().getShape());
+}
+
/// Return the dimensions of the result vector that were formerly ones in the
/// source tensor and thus correspond to "dim-1" broadcasting.
static llvm::SetVector<int64_t>
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
index 1cc477d9dca91..1f50de15ad756 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp
@@ -631,14 +631,69 @@ struct UnrollGatherPattern : public OpRewritePattern<vector::GatherOp> {
vector::UnrollVectorOptions options;
};
+struct UnrollBroadcastPattern : public OpRewritePattern<vector::BroadcastOp> {
+ UnrollBroadcastPattern(MLIRContext *context,
+ const vector::UnrollVectorOptions &options,
+ PatternBenefit benefit = 1)
+ : OpRewritePattern<vector::BroadcastOp>(context, benefit),
+ options(options) {}
+
+ LogicalResult matchAndRewrite(vector::BroadcastOp broadcastOp,
+ PatternRewriter &rewriter) const override {
+ auto targetShape = getTargetShape(options, broadcastOp);
+ if (!targetShape)
+ return failure();
+
+ Location loc = broadcastOp.getLoc();
+ VectorType srcType = dyn_cast<VectorType>(broadcastOp.getSourceType());
+ VectorType resType = broadcastOp.getResultVectorType();
+ VectorType newType =
+ resType.cloneWith(*targetShape, resType.getElementType());
+ Value result = rewriter.create<arith::ConstantOp>(
+ loc, resType, rewriter.getZeroAttr(resType));
+
+ SmallVector<int64_t> originalShape = *broadcastOp.getShapeForUnroll();
+ SmallVector<int64_t> strides(originalShape.size(), 1);
+
+ for (SmallVector<int64_t> offsets :
+ StaticTileOffsetRange(originalShape, *targetShape)) {
+ Value newSrc;
+ // Scalar to vector broadcast.
+ if (!srcType) {
+ newSrc = broadcastOp.getSource();
+ } else {
+ int64_t rank = srcType.getRank();
+ auto srcOffsets = llvm::ArrayRef<int64_t>(offsets).drop_front(rank);
+ auto srcShape = llvm::ArrayRef<int64_t>(*targetShape).drop_front(rank);
+ auto srcStrides = llvm::ArrayRef<int64_t>(strides).drop_front(rank);
+ newSrc = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
+ loc, broadcastOp.getSource(), srcOffsets, srcShape, srcStrides);
+ }
+
+ Operation *newOp = cloneOpWithOperandsAndTypes(rewriter, loc, broadcastOp,
+ newSrc, newType);
+
+ result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
+ loc, newOp->getResult(0), result, offsets, strides);
+ }
+
+ rewriter.replaceOp(broadcastOp, result);
+ return success();
+ }
+
+private:
+ vector::UnrollVectorOptions options;
+};
+
} // namespace
void mlir::vector::populateVectorUnrollPatterns(
RewritePatternSet &patterns, const UnrollVectorOptions &options,
PatternBenefit benefit) {
- patterns.add<UnrollTransferReadPattern, UnrollTransferWritePattern,
- UnrollContractionPattern, UnrollElementwisePattern,
- UnrollReductionPattern, UnrollMultiReductionPattern,
- UnrollTransposePattern, UnrollGatherPattern>(
- patterns.getContext(), options, benefit);
+ patterns
+ .add<UnrollTransferReadPattern, UnrollTransferWritePattern,
+ UnrollContractionPattern, UnrollElementwisePattern,
+ UnrollReductionPattern, UnrollMultiReductionPattern,
+ UnrollTransposePattern, UnrollGatherPattern, UnrollBroadcastPattern>(
+ patterns.getContext(), options, benefit);
}
diff --git a/mlir/test/Dialect/Vector/vector-unroll-options.mlir b/mlir/test/Dialect/Vector/vector-unroll-options.mlir
index 9c158d05b723c..fcbf1d13d1cee 100644
--- a/mlir/test/Dialect/Vector/vector-unroll-options.mlir
+++ b/mlir/test/Dialect/Vector/vector-unroll-options.mlir
@@ -196,7 +196,7 @@ func.func @negative_vector_fma_3d(%a: vector<3x2x2xf32>) -> vector<3x2x2xf32>{
// CHECK-LABEL: func @negative_vector_fma_3d
// CHECK-NOT: vector.extract_strided_slice
// CHECK: %[[R0:.*]] = vector.fma %{{.+}} : vector<3x2x2xf32>
-// CHECK: return
+// CHECK: return
func.func @vector_multi_reduction(%v : vector<4x6xf32>, %acc: vector<4xf32>) -> vector<4xf32> {
%0 = vector.multi_reduction #vector.kind<add>, %v, %acc [1] : vector<4x6xf32> to vector<4xf32>
@@ -311,3 +311,26 @@ func.func @vector_contract_batched(%lhs: vector<8x8x4xf32>, %rhs: vector<8x8x4xf
// BATCHED-COUNT-16: vector.contract
// BATCHED-NOT: vector.contract
// BATCHED: return
+
+
+func.func @vector_broadcast(%v: vector<4xf32>) -> vector<4x4xf32> {
+ %0 = vector.broadcast %v : vector<4xf32> to vector<4x4xf32>
+ return %0 : vector<4x4xf32>
+}
+
+// CHECK-LABEL: func @vector_broadcast
+// CHECK-SAME: [[arg0:%.+]]: vector<4xf32>
+// CHECK: [[c:%.+]] = arith.constant dense<0.000000e+00> : vector<4x4xf32>
+// CHECK: [[s0:%.+]] = vector.extract_strided_slice [[arg0]] {offsets = [0], sizes = [2], strides = [1]} : vector<4xf32> to vector<2xf32>
+// CHECK: [[b0:%.+]] = vector.broadcast [[s0]] : vector<2xf32> to vector<2x2xf32>
+// CHECK: [[r0:%.+]] = vector.insert_strided_slice [[b0]], [[c]] {offsets = [0, 0], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
+// CHECK: [[s1:%.+]] = vector.extract_strided_slice [[arg0]] {offsets = [2], sizes = [2], strides = [1]} : vector<4xf32> to vector<2xf32>
+// CHECK: [[b1:%.+]] = vector.broadcast [[s1]] : vector<2xf32> to vector<2x2xf32>
+// CHECK: [[r1:%.+]] = vector.insert_strided_slice [[b1]], [[r0]] {offsets = [0, 2], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
+// CHECK: [[s2:%.+]] = vector.extract_strided_slice [[arg0]] {offsets = [0], sizes = [2], strides = [1]} : vector<4xf32> to vector<2xf32>
+// CHECK: [[b2:%.+]] = vector.broadcast [[s2]] : vector<2xf32> to vector<2x2xf32>
+// CHECK: [[r2:%.+]] = vector.insert_strided_slice [[b2]], [[r1]] {offsets = [2, 0], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
+// CHECK: [[s3:%.+]] = vector.extract_strided_slice [[arg0]] {offsets = [2], sizes = [2], strides = [1]} : vector<4xf32> to vector<2xf32>
+// CHECK: [[b3:%.+]] = vector.broadcast [[s3]] : vector<2xf32> to vector<2x2xf32>
+// CHECK: [[r3:%.+]] = vector.insert_strided_slice [[b3]], [[r2]] {offsets = [2, 2], strides = [1, 1]} : vector<2x2xf32> into vector<4x4xf32>
+// CHECK: return [[r3]]
diff --git a/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp b/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
index ccba2e2806862..c8d662c83c3af 100644
--- a/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
+++ b/mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
@@ -157,12 +157,14 @@ struct TestVectorUnrollingPatterns
MLIRContext *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateVectorUnrollPatterns(
- patterns, UnrollVectorOptions()
- .setNativeShape(ArrayRef<int64_t>{2, 2})
- .setFilterConstraint([](Operation *op) {
- return success(isa<arith::AddFOp, vector::FMAOp,
- vector::MultiDimReductionOp>(op));
- }));
+ patterns,
+ UnrollVectorOptions()
+ .setNativeShape(ArrayRef<int64_t>{2, 2})
+ .setFilterConstraint([](Operation *op) {
+ return success(
+ isa<arith::AddFOp, vector::FMAOp, vector::MultiDimReductionOp,
+ vector::BroadcastOp>(op));
+ }));
populateVectorUnrollPatterns(
patterns, UnrollVectorOptions()
.setNativeShape(ArrayRef<int64_t>{2})
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR adds
UnrollBroadcastPattern
toVectorUnroll
transform. To support this, it also extendsBroadcastOp
definition withVectorUnrollOpInterface