-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir][vector] linearize vector.insert_strided_slice (flatten to vector.shuffle) #138725
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
d708a63
c578d7b
cd894d8
bcc4391
bb7a04d
34f3842
e59ca0d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
- Loading branch information
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -109,17 +109,103 @@ struct LinearizeVectorizable final | |
} | ||
}; | ||
|
||
/// This pattern converts the ExtractStridedSliceOp into a ShuffleOp that works | ||
/// on a linearized vector. | ||
/// Following, | ||
template <typename TOp> | ||
static bool stridesAllOne(TOp op) { | ||
static_assert( | ||
std::is_same_v<TOp, vector::ExtractStridedSliceOp> || | ||
std::is_same_v<TOp, vector::InsertStridedSliceOp>, | ||
"expected vector.extract_strided_slice or vector.insert_strided_slice"); | ||
ArrayAttr strides = op.getStrides(); | ||
return llvm::all_of( | ||
strides, [](auto stride) { return isConstantIntValue(stride, 1); }); | ||
} | ||
|
||
/// Convert an array of attributes into a vector of integers, if possible. | ||
static FailureOr<SmallVector<int64_t>> intsFromArrayAttr(ArrayAttr attrs) { | ||
if (!attrs) | ||
return failure(); | ||
SmallVector<int64_t> ints; | ||
ints.reserve(attrs.size()); | ||
for (auto attr : attrs) { | ||
if (auto intAttr = dyn_cast<IntegerAttr>(attr)) { | ||
ints.push_back(intAttr.getInt()); | ||
} else { | ||
return failure(); | ||
} | ||
} | ||
return ints; | ||
} | ||
|
||
/// Consider inserting a vector of shape `small` into a vector of shape `large`, | ||
/// at position `offsets`: this function enumeratates all the indices in `large` | ||
/// that are written to. The enumeration is with row-major ordering. | ||
/// | ||
/// Example: insert a 1x2 vector into a 4x5 vector at position (1,3). The 2 | ||
/// positions written to are (1,3) and (1,4), which have linearized indices 8 | ||
/// and 9. So [8,9] is returned. | ||
SmallVector<int64_t> static getFlattenedStridedSliceIndices( | ||
ArrayRef<int64_t> small, ArrayRef<int64_t> large, | ||
ArrayRef<int64_t> offsets) { | ||
|
||
// Example of alignment between, `large`, `small` and `offsets`: | ||
// large = 4, 5, 6, 7, 8 | ||
// small = 1, 6, 7, 8 | ||
// offsets = 2, 3, 0 | ||
// | ||
// `offsets` has implicit trailing 0s, `small` has implicit leading 1s. | ||
assert(large.size() >= small.size()); | ||
assert(large.size() >= offsets.size()); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: add message to assert? |
||
unsigned delta = large.size() - small.size(); | ||
unsigned nOffsets = offsets.size(); | ||
auto getSmall = [&](int64_t i) { return i >= delta ? small[i - delta] : 1; }; | ||
auto getOffset = [&](int64_t i) { return i < nOffsets ? offsets[i] : 0; }; | ||
|
||
// Using 2 vectors of indices, at each iteration populate the updated set of | ||
// indices based on the old set of indices, and the size of the small vector | ||
// in the current iteration. | ||
SmallVector<int64_t> indices{0}; | ||
SmallVector<int64_t> nextIndices; | ||
int64_t stride = 1; | ||
for (int i = large.size() - 1; i >= 0; --i) { | ||
auto currentSize = indices.size(); | ||
auto smallSize = getSmall(i); | ||
auto nextSize = currentSize * smallSize; | ||
nextIndices.resize(nextSize); | ||
int64_t *base = nextIndices.begin(); | ||
int64_t offset = getOffset(i) * stride; | ||
for (int j = 0; j < smallSize; ++j) { | ||
for (uint64_t k = 0; k < currentSize; ++k) { | ||
base[k] = indices[k] + offset; | ||
} | ||
offset += stride; | ||
base += currentSize; | ||
} | ||
stride *= large[i]; | ||
std::swap(indices, nextIndices); | ||
nextIndices.clear(); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. wonder if it's better to There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Makes sense, done |
||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I didn't have time to review this function. |
||
return indices; | ||
} | ||
|
||
/// This pattern converts a vector.extract_strided_slice operation into a | ||
/// vector.shuffle operation that has a rank-1 (linearized) operand and result. | ||
/// | ||
/// For example, the following: | ||
/// | ||
/// ``` | ||
/// vector.extract_strided_slice %source | ||
/// { offsets = [..], strides = [..], sizes = [..] } | ||
/// ``` | ||
/// | ||
/// is converted to : | ||
/// ``` | ||
/// %source_1d = vector.shape_cast %source | ||
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ] | ||
/// %out_nd = vector.shape_cast %out_1d | ||
/// `shuffle_indices_1d` is computed using the offsets and sizes of the | ||
/// extraction. | ||
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ] | ||
/// %out_nd = vector.shape_cast %out_1d | ||
/// ``` | ||
/// | ||
/// `shuffle_indices_1d` is computed using the offsets and sizes of the original | ||
/// vector.extract_strided_slice operation. | ||
struct LinearizeVectorExtractStridedSlice final | ||
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> { | ||
using OpConversionPattern::OpConversionPattern; | ||
|
@@ -129,88 +215,109 @@ struct LinearizeVectorExtractStridedSlice final | |
: OpConversionPattern(typeConverter, context, benefit) {} | ||
|
||
LogicalResult | ||
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor, | ||
matchAndRewrite(vector::ExtractStridedSliceOp extractStridedSliceOp, | ||
OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const override { | ||
VectorType dstType = | ||
getTypeConverter()->convertType<VectorType>(extractOp.getType()); | ||
assert(dstType && "vector type destination expected."); | ||
if (extractOp.getVector().getType().isScalable() || dstType.isScalable()) | ||
return rewriter.notifyMatchFailure(extractOp, | ||
"scalable vectors are not supported."); | ||
|
||
ArrayAttr offsets = extractOp.getOffsets(); | ||
ArrayAttr sizes = extractOp.getSizes(); | ||
ArrayAttr strides = extractOp.getStrides(); | ||
if (!isConstantIntValue(strides[0], 1)) | ||
return rewriter.notifyMatchFailure( | ||
extractOp, "Strided slice with stride != 1 is not supported."); | ||
Value srcVector = adaptor.getVector(); | ||
// If kD offsets are specified for nD source vector (n > k), the granularity | ||
// of the extraction is greater than 1. In this case last (n-k) dimensions | ||
// form the extraction granularity. | ||
// Example : | ||
// vector.extract_strided_slice %src { | ||
// offsets = [0, 0], sizes = [2, 2], strides = [1, 1]} : | ||
// vector<4x8x8xf32> to vector<2x2x8xf32> | ||
// Here, extraction granularity is 8. | ||
int64_t extractGranularitySize = 1; | ||
int64_t nD = extractOp.getSourceVectorType().getRank(); | ||
int64_t kD = (int64_t)offsets.size(); | ||
int64_t k = kD; | ||
while (k < nD) { | ||
extractGranularitySize *= extractOp.getSourceVectorType().getShape()[k]; | ||
++k; | ||
VectorType flatOutputType = getTypeConverter()->convertType<VectorType>( | ||
extractStridedSliceOp.getType()); | ||
assert(flatOutputType && "vector type expected"); | ||
|
||
if (!stridesAllOne(extractStridedSliceOp)) { | ||
return rewriter.notifyMatchFailure(extractStridedSliceOp, | ||
"strides other than 1 not supported"); | ||
} | ||
// Get total number of extracted slices. | ||
int64_t nExtractedSlices = 1; | ||
for (Attribute size : sizes) { | ||
nExtractedSlices *= cast<IntegerAttr>(size).getInt(); | ||
|
||
ArrayRef<int64_t> inputShape = | ||
extractStridedSliceOp.getSourceVectorType().getShape(); | ||
|
||
ArrayRef<int64_t> outputType = extractStridedSliceOp.getType().getShape(); | ||
|
||
auto maybeIntOffsets = | ||
intsFromArrayAttr(extractStridedSliceOp.getOffsets()); | ||
if (failed(maybeIntOffsets)) { | ||
return rewriter.notifyMatchFailure(extractStridedSliceOp, | ||
"failed to get integer offsets"); | ||
} | ||
// Compute the strides of the source vector considering first k dimensions. | ||
llvm::SmallVector<int64_t, 4> sourceStrides(kD, extractGranularitySize); | ||
for (int i = kD - 2; i >= 0; --i) { | ||
sourceStrides[i] = sourceStrides[i + 1] * | ||
extractOp.getSourceVectorType().getShape()[i + 1]; | ||
|
||
SmallVector<int64_t> indices = getFlattenedStridedSliceIndices( | ||
outputType, inputShape, maybeIntOffsets.value()); | ||
|
||
Value srcVector = adaptor.getVector(); | ||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>( | ||
extractStridedSliceOp, flatOutputType, srcVector, srcVector, indices); | ||
return success(); | ||
} | ||
}; | ||
|
||
/// This pattern converts a vector.insert_strided_slice operation into a | ||
/// vector.shuffle operation that has rank-1 (linearized) operands and result. | ||
/// | ||
/// For example, the following: | ||
/// ``` | ||
/// %0 = vector.insert_strided_slice %to_store, %into | ||
/// {offsets = [1, 0, 0, 0], strides = [1, 1]} | ||
/// : vector<2x2xi8> into vector<2x1x3x2xi8> | ||
/// ``` | ||
/// | ||
/// is converted to | ||
/// ``` | ||
/// %to_store_1d | ||
/// = vector.shape_cast %to_store : vector<2x2xi8> to vector<4xi8> | ||
/// %into_1d = vector.shape_cast %into : vector<2x1x3x2xi8> to vector<12xi8> | ||
/// %out_1d = vector.shuffle %into_1d, %to_store_1d [ shuffle_indices_1d ] | ||
/// %out_nd = vector.shape_cast %out_1d : vector<12xi8> to vector<2x1x3x2xi8> | ||
/// ``` | ||
/// | ||
/// where shuffle_indices_1d in this case is | ||
/// [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 10, 11]. | ||
/// ^^^^^^^^^^^^^^ | ||
/// to_store_1d | ||
/// | ||
struct LinearizeVectorInsertStridedSlice final | ||
: public mlir::OpConversionPattern<mlir::vector::InsertStridedSliceOp> { | ||
using OpConversionPattern::OpConversionPattern; | ||
LinearizeVectorInsertStridedSlice(const TypeConverter &typeConverter, | ||
MLIRContext *context, | ||
PatternBenefit benefit = 1) | ||
: OpConversionPattern(typeConverter, context, benefit) {} | ||
|
||
LogicalResult | ||
matchAndRewrite(vector::InsertStridedSliceOp insertStridedSliceOp, | ||
OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const override { | ||
|
||
if (!stridesAllOne(insertStridedSliceOp)) { | ||
return rewriter.notifyMatchFailure(insertStridedSliceOp, | ||
"strides other than 1 not supported"); | ||
} | ||
// Final shuffle indices has nExtractedSlices * extractGranularitySize | ||
// elements. | ||
llvm::SmallVector<int64_t, 4> indices(nExtractedSlices * | ||
extractGranularitySize); | ||
// Compute the strides of the extracted kD vector. | ||
llvm::SmallVector<int64_t, 4> extractedStrides(kD, 1); | ||
// Compute extractedStrides. | ||
for (int i = kD - 2; i >= 0; --i) { | ||
extractedStrides[i] = | ||
extractedStrides[i + 1] * cast<IntegerAttr>(sizes[i + 1]).getInt(); | ||
|
||
VectorType inputType = insertStridedSliceOp.getValueToStore().getType(); | ||
ArrayRef<int64_t> inputShape = inputType.getShape(); | ||
|
||
VectorType outputType = insertStridedSliceOp.getType(); | ||
ArrayRef<int64_t> outputShape = outputType.getShape(); | ||
int64_t nOutputElements = outputType.getNumElements(); | ||
|
||
auto maybeIntOffsets = intsFromArrayAttr(insertStridedSliceOp.getOffsets()); | ||
if (failed(maybeIntOffsets)) { | ||
return rewriter.notifyMatchFailure(insertStridedSliceOp, | ||
"failed to get integer offsets"); | ||
} | ||
// Iterate over all extracted slices from 0 to nExtractedSlices - 1 | ||
// and compute the multi-dimensional index and the corresponding linearized | ||
// index within the source vector. | ||
for (int64_t i = 0; i < nExtractedSlices; ++i) { | ||
int64_t index = i; | ||
// Compute the corresponding multi-dimensional index. | ||
llvm::SmallVector<int64_t, 4> multiDimIndex(kD, 0); | ||
for (int64_t j = 0; j < kD; ++j) { | ||
multiDimIndex[j] = (index / extractedStrides[j]); | ||
index -= multiDimIndex[j] * extractedStrides[j]; | ||
} | ||
// Compute the corresponding linearized index in the source vector | ||
// i.e. shift the multiDimIndex by the offsets. | ||
int64_t linearizedIndex = 0; | ||
for (int64_t j = 0; j < kD; ++j) { | ||
linearizedIndex += | ||
(cast<IntegerAttr>(offsets[j]).getInt() + multiDimIndex[j]) * | ||
sourceStrides[j]; | ||
} | ||
// Fill the indices array form linearizedIndex to linearizedIndex + | ||
// extractGranularitySize. | ||
for (int64_t j = 0; j < extractGranularitySize; ++j) { | ||
indices[i * extractGranularitySize + j] = linearizedIndex + j; | ||
} | ||
SmallVector<int64_t> sliceIndices = getFlattenedStridedSliceIndices( | ||
inputShape, outputShape, maybeIntOffsets.value()); | ||
|
||
SmallVector<int64_t> indices(nOutputElements, 0); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. we shouldn't initialize indices if we are overriding them all? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Right, because it's not like std::vector. Forgot that, thanks! |
||
std::iota(indices.begin(), indices.end(), 0); | ||
for (auto [index, sliceIndex] : llvm::enumerate(sliceIndices)) { | ||
indices[sliceIndex] = index + nOutputElements; | ||
} | ||
// Perform a shuffle to extract the kD vector. | ||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>( | ||
extractOp, dstType, srcVector, srcVector, indices); | ||
|
||
Value flatToStore = adaptor.getValueToStore(); | ||
Value flatDest = adaptor.getDest(); | ||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(insertStridedSliceOp, | ||
flatDest.getType(), flatDest, | ||
flatToStore, indices); | ||
return success(); | ||
} | ||
}; | ||
|
@@ -296,7 +403,7 @@ struct LinearizeVectorExtract final | |
// Skip if result is not a vector type | ||
if (!isa<VectorType>(extractOp.getType())) | ||
return rewriter.notifyMatchFailure(extractOp, | ||
"scalar extract is not supported."); | ||
"scalar extract not supported"); | ||
Type dstTy = getTypeConverter()->convertType(extractOp.getType()); | ||
assert(dstTy && "expected 1-D vector type"); | ||
|
||
|
@@ -539,6 +646,7 @@ void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns( | |
const TypeConverter &typeConverter, const ConversionTarget &target, | ||
RewritePatternSet &patterns) { | ||
patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract, | ||
LinearizeVectorInsert, LinearizeVectorExtractStridedSlice>( | ||
typeConverter, patterns.getContext()); | ||
LinearizeVectorInsert, LinearizeVectorExtractStridedSlice, | ||
LinearizeVectorInsertStridedSlice>(typeConverter, | ||
patterns.getContext()); | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: the name somewhat suggested to me that all the indices were returned. Could we make it more explicit? Maybe include "InsertionIndices" in the name?