Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

kyroy/kdtree

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kdtree

GoDoc Build Status Codecov Go Report Card License

A k-d tree implementation in Go with:

  • n-dimensional points
  • k-nearest neighbor search
  • range search
  • remove without rebuilding the whole subtree
  • data attached to the points
  • using own structs by implementing a simple 2 function interface

Usage

go get github.com/kyroy/kdtree
import "github.com/kyroy/kdtree"

Implement the kdtree.Point interface

// Point specifies one element of the k-d tree.
type Point interface {
	// Dimensions returns the total number of dimensions
	Dimensions() int
	// Dimension returns the value of the i-th dimension
	Dimension(i int) float64
}

points.Point2d

type Data struct {
	value string
}

func main() {
	tree := kdtree.New([]kdtree.Point{
		&points.Point2D{X: 3, Y: 1},
		&points.Point2D{X: 5, Y: 0},
		&points.Point2D{X: 8, Y: 3},
	})

	// Insert
	tree.Insert(&points.Point2D{X: 1, Y: 8})
	tree.Insert(&points.Point2D{X: 7, Y: 5})

	// KNN (k-nearest neighbor)
	fmt.Println(tree.KNN(&points.Point{Coordinates: []float64{1, 1, 1}}, 2))
	// [{3.00 1.00} {5.00 0.00}]
	
	// RangeSearch
	fmt.Println(tree.RangeSearch(kdrange.New(1, 8, 0, 2)))
	// [{5.00 0.00} {3.00 1.00}]
    
	// Points
	fmt.Println(tree.Points())
	// [{3.00 1.00} {1.00 8.00} {5.00 0.00} {8.00 3.00} {7.00 5.00}]

	// Remove
	fmt.Println(tree.Remove(&points.Point2D{X: 5, Y: 0}))
	// {5.00 0.00}

	// String
	fmt.Println(tree)
	// [[{1.00 8.00} {3.00 1.00} [<nil> {8.00 3.00} {7.00 5.00}]]]

	// Balance
	tree.Balance()
	fmt.Println(tree)
	// [[[{3.00 1.00} {1.00 8.00} <nil>] {7.00 5.00} {8.00 3.00}]]
}

n-dimensional Points (points.Point)

type Data struct {
	value string
}

func main() {
    tree := kdtree.New([]kdtree.Point{
        points.NewPoint([]float64{7, 2, 3}, Data{value: "first"}),
        points.NewPoint([]float64{3, 7, 10}, Data{value: "second"}),
        points.NewPoint([]float64{4, 6, 1}, Data{value: "third"}),
    })
    
    // Insert
    tree.Insert(points.NewPoint([]float64{12, 4, 6}, Data{value: "fourth"}))
    tree.Insert(points.NewPoint([]float64{8, 1, 0}, Data{value: "fifth"}))
    
    // KNN (k-nearest neighbor)
    fmt.Println(tree.KNN(&points.Point{Coordinates: []float64{1, 1, 1}}, 2))
    // [{[4 6 1] {third}} {[7 2 3] {first}}]
    
    // RangeSearch
    fmt.Println(tree.RangeSearch(kdrange.New(1, 15, 1, 5, 0, 5)))
    // [{[7 2 3] {first}} {[8 1 0] {fifth}}]
    
    // Points
    fmt.Println(tree.Points())
    // [{[3 7 10] {second}} {[4 6 1] {third}} {[8 1 0] {fifth}} {[7 2 3] {first}} {[12 4 6] {fourth}}]

    // Remove
    fmt.Println(tree.Remove(points.NewPoint([]float64{3, 7, 10}, nil)))
    // {[3 7 10] {second}}

    // String
    fmt.Println(tree)
    // [[<nil> {[4 6 1] {third}} [{[8 1 0] {fifth}} {[7 2 3] {first}} {[12 4 6] {fourth}}]]]

    // Balance
    tree.Balance()
    fmt.Println(tree)
    // [[[{[7 2 3] {first}} {[4 6 1] {third}} <nil>] {[8 1 0] {fifth}} {[12 4 6] {fourth}}]]
}

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.