Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings
Jim Schwoebel edited this page Aug 9, 2020 · 11 revisions

                    Python Dependencies GitHub Issues Contributions welcome License

Allie is a framework for building machine learning models from audio, text, image, video, or .CSV files.

Intended for both beginners and experts, Allie is designed to be easy-to-use for rapid prototyping and easy-to-extend to your desired modeling strategy.

Here are some things that Allie can do:

  • find and download datasets (for quick experiments)
  • annotate, clean, and/or augment audio, text, image, or video datasets (to prepare data for modeling)
  • featurize files using a standard format (via audio, text, image, video, or csv featurizers)
  • transform features (via scikit-learn preprocessing techniques)
  • visualize featurized datasets (via yellowbrick, scikit-learn, and matplotlib libraries)
  • train classification or regression machine learning models (via tpot, autokeras, autopytorch, ludwig, and 15+ other training scripts)
  • make predictions from machine learning models (with all models trained in ./models directory)
  • export data in .CSV file formats (for repeatable machine learning experiments across frameworks)
  • compress machine learning models for deployment (including repositories with readmes)

Clone this wiki locally

Morty Proxy This is a proxified and sanitized view of the page, visit original site.