Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

ivanhk/tensorflow-example

Open more actions menu
 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
33 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tensorflow-example(Now support text/sparse-input classfication/regression)

stop update, you can find new code in hasky/applications

using tf-record(suggeted, only tested with tf.version 1.0.0)

see README.md in ./examples
incase not find dependence, make sure set PYTHONPATH to include tensorflow-example/util so we can find gezi and melt

without tf-record(depreciated)

cd ./depreciated

basic tensorflow examples of doing binary classification will show auc result for each epoch It can deal with both dense or sparse input(like 3:2.5 1234:6.7)

#binary classification of dense input data using logistic regression python ./binary_classification.py --train ./data/feature.normed.rand.12000.0_2.txt --test ./data/feature.normed.rand.12000.1_2.txt python ./binary_classification.py --train ./data/feature.normed.rand.12000.0_2.txt --test ./data/feature.normed.rand.12000.1_2.txt --method mlp

#binary classification of sparse input data using logistic regression python ./binary_classification.py --train ./data/feature.trate.0_2.normed.txt --test ./data/feature.trate.1_2.normed.txt
python ./binary_classification.py --train ./data/feature.trate.0_2.normed.txt --test ./data/feature.trate.1_2.normed.txt --method mlp

python ./binary_classification.py --tr corpus/feature.trate.0_2.normed.txt --te corpus/feature.trate.1_2.normed.txt --batch_size 200 --method mlp --num_epochs 1000

... loading dataset: corpus/feature.trate.0_2.normed.txt

0

10000

20000

30000

40000

50000

60000

70000

finish loading train set corpus/feature.trate.0_2.normed.txt

... loading dataset: corpus/feature.trate.1_2.normed.txt

0

10000

finish loading test set corpus/feature.trate.1_2.normed.txt

num_features: 4762348

trainSet size: 70968

testSet size: 17742

batch_size: 200 learning_rate: 0.001 num_epochs: 1000

I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 24

I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 24

I tensorflow/core/common_runtime/local_device.cc:25] Local device intra op parallelism threads: 24

I tensorflow/core/common_runtime/local_session.cc:45] Local session inter op parallelism threads: 24

0 auc: 0.503701159392 cost: 0.69074464019

1 auc: 0.574863035489 cost: 0.600787888115

2 auc: 0.615858601208 cost: 0.60036152958

3 auc: 0.641573172518 cost: 0.599917832685

4 auc: 0.657326531323 cost: 0.599433459447

5 auc: 0.666575623414 cost: 0.598856064529

About

basic tensorflow examples

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
Morty Proxy This is a proxified and sanitized view of the page, visit original site.