Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

i207M/PINNacle

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs

This repository is our codebase for PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs. Our paper is currently under review. We will provide more detailed guide soon.

Implemented Methods

This benchmark paper implements the following variants and create a new challenging dataset to compare them,

Method Type
PINN Vanilla PINNs
PINNs(Adam+L-BFGS) Vanilla PINNs
PINN-LRA Loss reweighting
PINN-NTK Loss reweighting
RAR Collocation points resampling
MultiAdam New optimizer
gPINN New loss functions (regularization terms)
hp-VPINN New loss functions (variational formulation)
LAAF New architecture (activation)
GAAF New architecture (activation)
FBPINN New architecture (domain decomposition)

See these references for more details,

Installation

# conda create -n pinnacle python=3.9
# conda activate pinnacle  # To keep Python environments separate
git clone https://github.com/i207M/PINNacle.git --depth 1
cd PINNacle
pip install -r requirements.txt

Usage

📄 Full Documention

Run all 20 cases with default settings:

python benchmark.py [--name EXP_NAME] [--seed SEED] [--device DEVICE]

Citation

If you find out work useful, please cite our paper at:

@article{hao2023pinnacle,
  title={PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs},
  author={Hao, Zhongkai and Yao, Jiachen and Su, Chang and Su, Hang and Wang, Ziao and Lu, Fanzhi and Xia, Zeyu and Zhang, Yichi and Liu, Songming and Lu, Lu and others},
  journal={arXiv preprint arXiv:2306.08827},
  year={2023}
}

We also suggest you have a look at the survey paper (Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications) about PINNs, neural operators, and other paradigms of PIML.

@article{hao2022physics,
  title={Physics-informed machine learning: A survey on problems, methods and applications},
  author={Hao, Zhongkai and Liu, Songming and Zhang, Yichi and Ying, Chengyang and Feng, Yao and Su, Hang and Zhu, Jun},
  journal={arXiv preprint arXiv:2211.08064},
  year={2022}
}

About

Codebase for PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 5

Morty Proxy This is a proxified and sanitized view of the page, visit original site.