Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Some answers are incorrect #24

Copy link
Copy link
@timdingman-scale

Description

@timdingman-scale
Issue body actions

Q1

If $\det \mathbf{A} = -1,$ then find $\det (\mathbf{7A}).$

GT

In general, $\det (k \mathbf{A}) = k^2 \det \mathbf{A}.$ Thus,
[\det (7 \mathbf{A}) = 7^2 (-1) = \boxed{-49}.]

Problem & Correction

The GT answer is only true if A is 2x2, but that's not stated or implied in the question.

The general solution is -7^n, where n is the dimension of the matrix.

Q2

In the diagram below, $AB = AC = 115,$ $AD = 38,$ and $CF = 77.$ Compute $\frac{[CEF]}{[DBE]}.$

[asy]
unitsize(0.025 cm);

pair A, B, C, D, E, F;

B = (0,0);
C = (80,0);
A = intersectionpoint(arc(B,115,0,180),arc(C,115,0,180));
D = interp(A,B,38/115);
F = interp(A,C,(115 + 77)/115);
E = extension(B,C,D,F);

draw(C--B--A--F--D);

label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, NE);
label("$D$", D, W);
label("$E$", E, SW);
label("$F$", F, SE);
[/asy]

GT

\begin{align*} \frac{[CEF]}{[DBE]} &= \frac{\frac{1}{2} \cdot EF \cdot CE \cdot \sin \angle CEF}{\frac{1}{2} \cdot DE \cdot BE \cdot \sin \angle BED} \ &= \frac{EF}{DE} \cdot \frac{CE}{BE} \cdot \frac{\sin \angle CEF}{\sin \angle BED} \ &= \boxed{\frac{19}{96}}. \end{align*}

(In case it doesn't render, the final answer says 19/96)

Problem & Correction

$\frac{[CEF]}{[DBE]} = \frac{EF}{DE} \cdot \frac{CE}{BE} = 1 \cdot \frac{96}{19} = \frac{96}{19}$

In other words, the GT answer is inverted

Q3

The real number $x$ satisfies
[3x + \frac{1}{2x} = 3.]

Find
[64x^6 + \frac{1}{729x^6}.]

GT

Multiplying both sides of $3x + \frac{1}{2x} = 3$ by $\frac{2}{3},$ we get
[2x + \frac{1}{3x} = 2.]

Squaring both sides, we get
[4x^2 + \frac{4}{3} + \frac{1}{9x^2} = 4,]

so
[4x^2 + \frac{1}{9x^2} = \frac{8}{3}.]

Cubing both sides, we get

[64x^3 + 3 \cdot \frac{(4x^2)^2}{9x^2} + 3 \cdot \frac{4x^2}{(9x^2)^2} + \frac{1}{729x^6} = \frac{512}{27}.]

Then
\begin{align*}
64x^3 + \frac{1}{729x^6} &= \frac{512}{27} - \frac{3 \cdot 4x^2}{9x^2} \left( 4x^2 + \frac{1}{9x^2} \right) \
&= \frac{512}{27} - \frac{3 \cdot 4}{9} \cdot \frac{8}{3} \
&= \boxed{\frac{416}{27}}.
\end{align*}

Problem & Correction

The first term in the cubed expression should be 64x^6, not 64x^3.

Q4

Let $a,$ $b,$ $c$ be distinct complex numbers such that
[\frac{a}{1 - b} = \frac{b}{1 - c} = \frac{c}{1 - a} = k.]

Find the sum of all possible values of $k.$

GT

From the given equation,
\begin{align*}
a &= k(1 - b), \
b &= k(1 - c), \
c &= k(1 - a).
\end{align*}Then
\begin{align*}
a &= k(1 - b) \
&= k(1 - k(1 - c)) \
&= k(1 - k(1 - k(1 - a))).
\end{align*}Expanding, we get $ak^3 + a - k^3 + k^2 - k = 0,$ which factors as
[(k^2 - k + 1)(ak + a - k) = 0.]If $ak + a - k = 0,$ then $a = \frac{k}{k + 1},$ in which case $b = c = \frac{k}{k + 1}.$ This is not allowed, as $a,$ $b,$ and $c$ are distinct, so $k^2 - k + 1 = 0.$ The sum of the roots is $\boxed{1}.$

Note: The roots of $k^2 - k + 1 = 0$ are
[\frac{1 \pm i \sqrt{3}}{2}.]For either value of $k,$ we can take $a = 0,$ $b = 1,$ and $c = k.$

Problem & Solution

$a = 0,$ $b = 1,$ and $c = k$ is not permitted since it would make $\frac{a}{1 - b}$ undefined

Kaffaljidhmah2

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      Morty Proxy This is a proxified and sanitized view of the page, visit original site.