Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

fix: Properly support format param for numerical input. #486

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We鈥檒l occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Mar 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions 17 bigframes/core/compile/scalar_op_compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@

# Datetime constants
UNIT_TO_US_CONVERSION_FACTORS = {
"W": 7 * 24 * 60 * 60 * 1000 * 1000,
"d": 24 * 60 * 60 * 1000 * 1000,
"D": 24 * 60 * 60 * 1000 * 1000,
"h": 60 * 60 * 1000 * 1000,
"m": 60 * 1000 * 1000,
Expand Down Expand Up @@ -733,12 +735,19 @@ def to_datetime_op_impl(x: ibis_types.Value, op: ops.ToDatetimeOp):
if x.type() == ibis_dtypes.str:
x = x.to_timestamp(op.format) if op.format else timestamp(x)
elif x.type() == ibis_dtypes.Timestamp(timezone="UTC"):
if op.format:
raise NotImplementedError(
f"Format parameter is not supported for Timestamp input types. {constants.FEEDBACK_LINK}"
)
return x
elif x.type() != ibis_dtypes.timestamp:
# The default unit is set to "ns" (nanoseconds) for consistency
# with pandas, where "ns" is the default unit for datetime operations.
unit = op.unit or "ns"
x = numeric_to_datatime(x, unit)
if op.format:
x = x.cast(ibis_dtypes.str).to_timestamp(op.format)
else:
# The default unit is set to "ns" (nanoseconds) for consistency
# with pandas, where "ns" is the default unit for datetime operations.
unit = op.unit or "ns"
x = numeric_to_datatime(x, unit)

return x.cast(ibis_dtypes.Timestamp(timezone="UTC" if op.utc else None))

Expand Down
8 changes: 8 additions & 0 deletions 8 bigframes/core/tools/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,14 @@ def to_datetime(
f"String and Timestamp requires utc=True. {constants.FEEDBACK_LINK}"
)

if format and unit and arg.dtype in ("Int64", "Float64"): # type: ignore
raise ValueError("cannot specify both format and unit")

if unit and arg.dtype not in ("Int64", "Float64"): # type: ignore
raise NotImplementedError(
f"Unit parameter is not supported for non-numerical input types. {constants.FEEDBACK_LINK}"
)

return arg._apply_unary_op( # type: ignore
ops.ToDatetimeOp(
utc=utc,
Expand Down
43 changes: 43 additions & 0 deletions 43 tests/system/small/test_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -539,3 +539,46 @@ def test_to_datetime_series(scalars_dfs):
pd.testing.assert_series_equal(
bf_result, pd_result, check_index_type=False, check_names=False
)


@pytest.mark.parametrize(
("arg", "unit"),
[
([1, 2, 3], "W"),
([1, 2, 3], "d"),
([1, 2, 3], "D"),
([1, 2, 3], "h"),
([1, 2, 3], "m"),
([20242330, 25244685, 34324234], "s"),
([20242330000, 25244685000, 34324234000], "ms"),
([20242330000000, 25244685000000, 34324234000000], "us"),
([20242330000000000, 25244685000000000, 34324234000000000], "ns"),
],
)
def test_to_datetime_unit_param(arg, unit):
bf_result = bpd.to_datetime(arg, unit=unit).to_pandas().astype("datetime64[ns]")
pd_result = pd.Series(pd.to_datetime(arg, unit=unit)).dt.floor("us")
pd.testing.assert_series_equal(
bf_result, pd_result, check_index_type=False, check_names=False
)


@pytest.mark.parametrize(
("arg", "utc", "format"),
[
([20230110, 20230101, 20230101], False, "%Y%m%d"),
([201301.01], False, "%Y%m.%d"),
(["2023-01-10", "2023-01-20", "2023-01-01"], True, "%Y-%m-%d"),
(["2014-08-15 07:19"], True, "%Y-%m-%d %H:%M"),
],
)
def test_to_datetime_format_param(arg, utc, format):
bf_result = (
bpd.to_datetime(arg, utc=utc, format=format)
.to_pandas()
.astype("datetime64[ns, UTC]" if utc else "datetime64[ns]")
)
pd_result = pd.Series(pd.to_datetime(arg, utc=utc, format=format)).dt.floor("us")
pd.testing.assert_series_equal(
bf_result, pd_result, check_index_type=False, check_names=False
)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.