diff --git a/third_party/bigframes_vendored/sklearn/metrics/_classification.py b/third_party/bigframes_vendored/sklearn/metrics/_classification.py index a9d8038e59..35c22f4cd0 100644 --- a/third_party/bigframes_vendored/sklearn/metrics/_classification.py +++ b/third_party/bigframes_vendored/sklearn/metrics/_classification.py @@ -26,6 +26,24 @@ def accuracy_score(y_true, y_pred, normalize=True) -> float: """Accuracy classification score. + **Examples:** + + >>> import bigframes.pandas as bpd + >>> import bigframes.ml.metrics + >>> bpd.options.display.progress_bar = None + + >>> y_true = bpd.DataFrame([0, 2, 1, 3]) + >>> y_pred = bpd.DataFrame([0, 1, 2, 3]) + >>> accuracy_score = bigframes.ml.metrics.accuracy_score(y_true, y_pred) + >>> accuracy_score + 0.5 + + If False, return the number of correctly classified samples: + + >>> accuracy_score = bigframes.ml.metrics.accuracy_score(y_true, y_pred, normalize=False) + >>> accuracy_score + 2 + Args: y_true (Series or DataFrame of shape (n_samples,)): Ground truth (correct) labels. @@ -58,6 +76,30 @@ def confusion_matrix( :math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is :math:`C_{1,1}` and false positives is :math:`C_{0,1}`. + **Examples:** + + >>> import bigframes.pandas as bpd + >>> import bigframes.ml.metrics + >>> bpd.options.display.progress_bar = None + + >>> y_true = bpd.DataFrame([2, 0, 2, 2, 0, 1]) + >>> y_pred = bpd.DataFrame([0, 0, 2, 2, 0, 2]) + >>> confusion_matrix = bigframes.ml.metrics.confusion_matrix(y_true, y_pred) + >>> confusion_matrix + 0 1 2 + 0 2 0 0 + 1 0 0 1 + 2 1 0 2 + + >>> y_true = bpd.DataFrame(["cat", "ant", "cat", "cat", "ant", "bird"]) + >>> y_pred = bpd.DataFrame(["ant", "ant", "cat", "cat", "ant", "cat"]) + >>> confusion_matrix = bigframes.ml.metrics.confusion_matrix(y_true, y_pred) + >>> confusion_matrix + ant bird cat + ant 2 0 0 + bird 0 0 1 + cat 1 0 2 + Args: y_true (Series or DataFrame of shape (n_samples,)): Ground truth (correct) target values.