Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

feat: Add ml.metrics.pairwise.paired_euclidean_distances #397

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We鈥檒l occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions 16 bigframes/ml/metrics/pairwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,3 +50,19 @@ def paired_manhattan_distance(
paired_manhattan_distance.__doc__ = inspect.getdoc(
vendored_metrics_pairwise.paired_manhattan_distance
)


def paired_euclidean_distances(
X: Union[bpd.DataFrame, bpd.Series], Y: Union[bpd.DataFrame, bpd.Series]
) -> bpd.DataFrame:
X, Y = utils.convert_to_dataframe(X, Y)
if len(X.columns) != 1 or len(Y.columns) != 1:
raise ValueError("Inputs X and Y can only contain 1 column.")

base_bqml = core.BaseBqml(session=X._session)
return base_bqml.distance(X, Y, type="EUCLIDEAN", name="euclidean_distance")


paired_euclidean_distances.__doc__ = inspect.getdoc(
vendored_metrics_pairwise.paired_euclidean_distances
)
16 changes: 16 additions & 0 deletions 16 tests/system/small/ml/test_metrics_pairwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,3 +47,19 @@ def test_paired_manhattan_distance():
pd.testing.assert_frame_equal(
result.to_pandas(), expected_pd_df, check_dtype=False, check_index_type=False
)


def test_paired_euclidean_distances():
x_col = [np.array([4.1, 0.5, 1.0])]
y_col = [np.array([3.0, 0.0, 2.5])]
X = bpd.read_pandas(pd.DataFrame({"X": x_col}))
Y = bpd.read_pandas(pd.DataFrame({"Y": y_col}))

result = metrics.pairwise.paired_euclidean_distances(X, Y)
expected_pd_df = pd.DataFrame(
{"X": x_col, "Y": y_col, "euclidean_distance": [1.926136]}
)

pd.testing.assert_frame_equal(
result.to_pandas(), expected_pd_df, check_dtype=False, check_index_type=False
)
15 changes: 15 additions & 0 deletions 15 third_party/bigframes_vendored/sklearn/metrics/pairwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,3 +39,18 @@ def paired_manhattan_distance(X, Y) -> bpd.DataFrame:
bigframes.dataframe.DataFrame: DataFrame with columns of X, Y and manhattan_distance
"""
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)


def paired_euclidean_distances(X, Y) -> bpd.DataFrame:
"""Compute the paired euclidean distances between X and Y.

Args:
X (Series or single column DataFrame of array of numeric type):
Input data.
Y (Series or single column DataFrame of array of numeric type):
Input data. X and Y are mapped by indexes, must have the same index.

Returns:
bigframes.dataframe.DataFrame: DataFrame with columns of X, Y and euclidean_distance
"""
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.