Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

docs: add examples for dataframe.kurt, dataframe.std, dataframe.count #232

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We鈥檒l occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Nov 28, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 87 additions & 9 deletions 96 third_party/bigframes_vendored/pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -2597,14 +2597,14 @@ def any(self, *, axis=0, bool_only: bool = False):
<BLANKLINE>
[2 rows x 2 columns]

Checking if each column contains at least one True element (the default behavior without an explicit axis parameter).
Checking if each column contains at least one True element(the default behavior without an explicit axis parameter):

>>> df.any()
A True
B False
dtype: boolean

Checking if each row contains at least one True element.
Checking if each row contains at least one True element:

>>> df.any(axis=1)
0 True
Expand Down Expand Up @@ -2644,14 +2644,14 @@ def all(self, axis=0, *, bool_only: bool = False):
<BLANKLINE>
[2 rows x 2 columns]

Checking if all values in each column are True (the default behavior without an explicit axis parameter).
Checking if all values in each column are True(the default behavior without an explicit axis parameter):

>>> df.all()
A True
B False
dtype: boolean

Checking across rows to see if all values are True.
Checking across rows to see if all values are True:

>>> df.all(axis=1)
0 False
Expand Down Expand Up @@ -2688,14 +2688,14 @@ def prod(self, axis=0, *, numeric_only: bool = False):
<BLANKLINE>
[3 rows x 2 columns]

Calculating the product of each column (the default behavior without an explicit axis parameter).
Calculating the product of each column(the default behavior without an explicit axis parameter):

>>> df.prod()
A 6.0
B 160.875
dtype: Float64

Calculating the product of each row.
Calculating the product of each row:

>>> df.prod(axis=1)
0 4.5
Expand Down Expand Up @@ -2911,11 +2911,37 @@ def skew(self, *, numeric_only: bool = False):
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)

def kurt(self, *, numeric_only: bool = False):
"""Return unbiased kurtosis over requested axis.
"""Return unbiased kurtosis over columns.

Kurtosis obtained using Fisher's definition of
kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

**Examples:**

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame({"A": [1, 2, 3, 4, 5],
... "B": [3, 4, 3, 2, 1],
... "C": [2, 2, 3, 2, 2]})
>>> df
A B C
0 1 3 2
1 2 4 2
2 3 3 3
3 4 2 2
4 5 1 2
<BLANKLINE>
[5 rows x 3 columns]

Calculating the kurtosis value of each column:

>>> df.kurt()
A -1.2
B -0.177515
C 5.0
dtype: Float64

Args:
numeric_only (bool, default False):
Include only float, int, boolean columns.
Expand All @@ -2926,10 +2952,36 @@ def kurt(self, *, numeric_only: bool = False):
raise NotImplementedError(constants.ABSTRACT_METHOD_ERROR_MESSAGE)

def std(self, *, numeric_only: bool = False):
"""Return sample standard deviation over requested axis.
"""Return sample standard deviation over columns.

Normalized by N-1 by default.

**Examples:**

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame({"A": [1, 2, 3, 4, 5],
... "B": [3, 4, 3, 2, 1],
... "C": [2, 2, 3, 2, 2]})
>>> df
A B C
0 1 3 2
1 2 4 2
2 3 3 3
3 4 2 2
4 5 1 2
<BLANKLINE>
[5 rows x 3 columns]

Calculating the standard deviation of each column:

>>> df.std()
A 1.581139
B 1.140175
C 0.447214
dtype: Float64

Args:
numeric_only (bool. default False):
Default False. Include only float, int, boolean columns.
Expand All @@ -2941,11 +2993,37 @@ def std(self, *, numeric_only: bool = False):

def count(self, *, numeric_only: bool = False):
"""
Count non-NA cells for each column or row.
Count non-NA cells for each column.

The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending
on `pandas.options.mode.use_inf_as_na`) are considered NA.

**Examples:**

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame({"A": [1, None, 3, 4, 5],
... "B": [1, 2, 3, 4, 5],
... "C": [None, 3.5, None, 4.5, 5.0]})
>>> df
A B C
0 1.0 1 <NA>
1 <NA> 2 3.5
2 3.0 3 <NA>
3 4.0 4 4.5
4 5.0 5 5.0
<BLANKLINE>
[5 rows x 3 columns]

Counting non-NA values for each column:

>>> df.count()
A 4.0
B 5.0
C 3.0
dtype: Float64

Args:
numeric_only (bool, default False):
Include only `float`, `int` or `boolean` data.
Expand Down
Morty Proxy This is a proxified and sanitized view of the page, visit original site.