diff --git a/samples/snippets/create_multiple_timeseries_forecasting_model_test.py b/samples/snippets/create_multiple_timeseries_forecasting_model_test.py index e414fdea9c..b749c37d50 100644 --- a/samples/snippets/create_multiple_timeseries_forecasting_model_test.py +++ b/samples/snippets/create_multiple_timeseries_forecasting_model_test.py @@ -17,6 +17,7 @@ def test_multiple_timeseries_forecasting_model(random_model_id: str) -> None: your_model_id = random_model_id # [START bigquery_dataframes_bqml_arima_multiple_step_2_visualize] + import bigframes.pandas as bpd df = bpd.read_gbq("bigquery-public-data.new_york.citibike_trips") diff --git a/samples/snippets/create_single_timeseries_forecasting_model_test.py b/samples/snippets/create_single_timeseries_forecasting_model_test.py index 60b8d13149..9965da2817 100644 --- a/samples/snippets/create_single_timeseries_forecasting_model_test.py +++ b/samples/snippets/create_single_timeseries_forecasting_model_test.py @@ -104,7 +104,22 @@ def test_create_single_timeseries() -> None: # 25 2017-08-27 00:00:00+00:00 1853.735689 410.596551 0.8 1327.233216 2380.238162 1327.233216 2380.238162 # 1 2017-08-03 00:00:00+00:00 2621.33159 241.093355 0.8 2312.180802 2930.482379 2312.180802 2930.482379 # [END bigquery_dataframes_single_timeseries_forecasting_model_tutorial_forecast] + + # [START bigquery_dataframes_single_timeseries_forecasting_model_tutorial_explain_forecast] + ex_pred = model.predict_explain(horizon=30, confidence_level=0.8) + + print(ex_pred.head(4)) + # Expected output: + # time_series_timestamp time_series_type time_series_data time_series_adjusted_data standard_error confidence_level prediction_interval_lower_bound prediction_interval_upper_bound trend seasonal_period_yearly seasonal_period_quarterly seasonal_period_monthly seasonal_period_weekly seasonal_period_daily holiday_effect spikes_and_dips step_changes residual + # 0 2016-08-01 00:00:00+00:00 history 1711.0 505.716474 206.939556 0.0 169.611938 1205.283526 336.104536 + # 1 2016-08-02 00:00:00+00:00 history 2140.0 623.137701 206.939556 336.104428 287.033273 1205.283526 311.578773 + # 2 2016-08-03 00:00:00+00:00 history 2890.0 1008.655091 206.939556 563.514213 445.140878 1205.283526 676.061383 + # 3 2016-08-04 00:00:00+00:00 history 3161.0 1389.40959 206.939556 986.317236 403.092354 1205.283526 566.306884 + # 4 2016-08-05 00:00:00+00:00 history 2702.0 1394.395741 206.939556 1248.707386 145.688355 1205.283526 102.320733 + # 5 2016-08-06 00:00:00+00:00 history 1663.0 437.09243 206.939556 1188.59004 -751.49761 1205.283526 20.624044 + # [END bigquery_dataframes_single_timeseries_forecasting_model_tutorial_explain_forecast] assert coef is not None + assert ex_pred is not None assert summary is not None assert model is not None assert parsed_date is not None