Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

fungtion/DANN_py3

Open more actions menu

Repository files navigation

This is a pytorch implementation of the paper Unsupervised Domain Adaptation by Backpropagation

Environment

  • Pytorch 1.6
  • Python 3.8.5

Network Structure

p8KTyD.md.jpg

Dataset

First, download target dataset mnist_m from pan.quark.com or Google Drive, and put mnist_m dataset into dataset/mnist_m, the structure is as follows:

--dataset--mnist_m--mnist_m_train
                 |--mnist_m_test
                 |--mnist_m_train_labels.txt
                 |--mnist_m_test_labels.txt
                 |--.gitkeep

Training

Then, run python main.py

Docker

  • build image
docker build -t pytorch_dann .
  • run docker container
docker run -it --runtime=nvidia \
  -u $(id -u):$(id -g) \
  -v /YOUR/DANN/PROJECT/dataset:/DANN/dataset \
  -v /YOUR/DANN/PROJECT/models:/DANN/models \
  pytorch_dann:latest \
  python main.py

About

python 3 pytorch implementation of DANN

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
Morty Proxy This is a proxified and sanitized view of the page, visit original site.