Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Interactivity #84

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 19 commits into from
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
beginning base logic for interactivity impl
  • Loading branch information
clewis7 committed Dec 23, 2022
commit 67cc06c312b9d9e0449f47d36a091e5713ef4643
391 changes: 391 additions & 0 deletions 391 examples/event_handler.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,391 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a0b458c1-53c6-43d9-a72a-41f51bfe493d",
"metadata": {},
"source": [
"### notebook for learning event handler system"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "638b6a65-6d78-459c-ac88-35312233d22a",
"metadata": {},
"outputs": [],
"source": [
"from mesmerize_core import *\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"import pandas as pd\n",
"from fastplotlib import GridPlot, Image, Plot, Line, Heatmap\n",
"from scipy.spatial import distance\n",
"from ipywidgets.widgets import IntSlider, VBox\n",
"import pygfx"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "80938adc-1775-4751-94dd-89fb94ed673a",
"metadata": {},
"outputs": [],
"source": [
"class Contour_Selection():\n",
" def __init__(\n",
" self,\n",
" gp: GridPlot,\n",
" coms,\n",
" ):\n",
" self.gp = gp\n",
" self.heatmap = self.gp.subplots[0, 1].scene.children[0]\n",
" self.image = None\n",
" self._contour_index = None \n",
" \n",
" for child in self.gp.subplots[0, 0].scene.children:\n",
" if isinstance(child, pygfx.Image):\n",
" self.image = child\n",
" break;\n",
" if self.image == None:\n",
" raise ValueError(\"No image found!\")\n",
" self.coms = np.array(coms)\n",
" \n",
" self.image.add_event_handler(self.event_handler, \"click\")\n",
" \n",
" # first need to add event handler for when contour is clicked on\n",
" # should also trigger highlighting in heatmap\n",
" def event_handler(self, event):\n",
" if self._contour_index is not None:\n",
" self.remove_highlight()\n",
" self.add_highlight(event)\n",
" else:\n",
" self.add_highlight(event)\n",
" \n",
" def add_highlight(self, event):\n",
" click_location = np.array(event.pick_info[\"index\"])\n",
" self._contour_index = np.linalg.norm((self.coms - click_location), axis=1).argsort()[0] + 1\n",
" line = self.gp.subplots[0, 0].scene.children[self._contour_index]\n",
" line.geometry.colors.data[:] = np.array([1.0, 1.0, 1.0, 1.0]) \n",
" line.geometry.colors.update_range()\n",
" #self.heatmap.add_highlight(self._contour_index)\n",
" \n",
" def remove_highlight(self):\n",
" # change color of highlighted index back to normal\n",
" line = self.gp.subplots[0, 0].scene.children[self._contour_index]\n",
" line.geometry.colors.data[:] = np.array([1., 0., 0., 0.7]) \n",
" line.geometry.colors.update_range()\n",
" # for h in self.heatmap._highlights:\n",
" # self.heatmap.remove_highlight(h)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "7b3129e6-5d82-4f39-b887-e584421c3a74",
"metadata": {},
"outputs": [],
"source": [
"set_parent_raw_data_path(\"/home/kushal/caiman_data/\")\n",
"\n",
"batch_path = \"/home/clewis7/caiman_data/cnmf_practice/batch.pickle\"\n",
"\n",
"movie_path = \"/home/kushal/caiman_data/example_movies/Sue_2x_3000_40_-46.tif\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "776c6dd8-cf07-47ee-bcc4-5fe84bc030f5",
"metadata": {},
"outputs": [],
"source": [
"df = load_batch(batch_path)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b22fd79b-5a7a-48fb-898c-4d3f3a34c118",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>algo</th>\n",
" <th>item_name</th>\n",
" <th>input_movie_path</th>\n",
" <th>params</th>\n",
" <th>outputs</th>\n",
" <th>comments</th>\n",
" <th>uuid</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>mcorr</td>\n",
" <td>my_movie</td>\n",
" <td>example_movies/Sue_2x_3000_40_-46.tif</td>\n",
" <td>{'main': {'max_shifts': (24, 24), 'strides': (...</td>\n",
" <td>{'mean-projection-path': 1ed8feb3-9fc8-4a78-8f...</td>\n",
" <td>None</td>\n",
" <td>1ed8feb3-9fc8-4a78-8f6d-164620822016</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>cnmf</td>\n",
" <td>my_movie</td>\n",
" <td>1ed8feb3-9fc8-4a78-8f6d-164620822016/1ed8feb3-...</td>\n",
" <td>{'main': {'fr': 30, 'p': 1, 'nb': 2, 'merge_th...</td>\n",
" <td>{'mean-projection-path': 5f4e3e27-ac1f-4ede-90...</td>\n",
" <td>None</td>\n",
" <td>5f4e3e27-ac1f-4ede-903b-be43bd81fddc</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" algo item_name input_movie_path \\\n",
"0 mcorr my_movie example_movies/Sue_2x_3000_40_-46.tif \n",
"1 cnmf my_movie 1ed8feb3-9fc8-4a78-8f6d-164620822016/1ed8feb3-... \n",
"\n",
" params \\\n",
"0 {'main': {'max_shifts': (24, 24), 'strides': (... \n",
"1 {'main': {'fr': 30, 'p': 1, 'nb': 2, 'merge_th... \n",
"\n",
" outputs comments \\\n",
"0 {'mean-projection-path': 1ed8feb3-9fc8-4a78-8f... None \n",
"1 {'mean-projection-path': 5f4e3e27-ac1f-4ede-90... None \n",
"\n",
" uuid \n",
"0 1ed8feb3-9fc8-4a78-8f6d-164620822016 \n",
"1 5f4e3e27-ac1f-4ede-903b-be43bd81fddc "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "03045957-837e-49e3-83aa-3e069af977a1",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3b283ef0f3084d828f80fd3a6cb25413",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"RFBOutputContext()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8b104ac5f10e4d53866953a4401593df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(JupyterWgpuCanvas(), IntSlider(value=0, max=2999)))"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"gp = GridPlot(shape=(1,2))\n",
"\n",
"contours, coms = df.iloc[-1].cnmf.get_contours()\n",
"movie = df.iloc[-1].cnmf.get_input_memmap()\n",
"temporal = df.iloc[-1].cnmf.get_temporal()\n",
"\n",
"contour_graphic = Image(movie[0].T, cmap=\"gnuplot2\")\n",
"heatmap = Heatmap(data=temporal[:,0:1000], cmap=\"jet\")\n",
"\n",
"slider = IntSlider(value=0, min=0, max=movie.shape[0] - 1, step=1)\n",
"\n",
"gp.subplots[0,0].add_graphic(contour_graphic)\n",
"gp.subplots[0,1].add_graphic(heatmap)\n",
"\n",
"for coor in contours:\n",
" # line data has to be 3D\n",
" zs = np.ones(coor.shape[0]) # this will place it above the image graphic\n",
" c3d = [coor[:, 0], coor[:, 1], zs]\n",
" coors_3d = np.dstack(c3d)[0]\n",
"\n",
" # make all the lines red, [R, G, B, A] array\n",
" colors = np.vstack([[1., 0., 0., 0.7]] * coors_3d.shape[0])\n",
" line_graphic = Line(data=coors_3d, colors=colors, zlevel=1)\n",
" gp.subplots[0, 0].add_graphic(line_graphic)\n",
"\n",
"previous_slider_value = 0\n",
"def update_frame(): \n",
" if slider.value == previous_slider_value:\n",
" return\n",
" contour_graphic.update_data(data=movie[slider.value].T)\n",
"\n",
"gp.add_animations([update_frame])\n",
"\n",
"VBox([gp.show(), slider])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2bf4a1ea-3559-4846-bc32-4dddaca2d470",
"metadata": {},
"outputs": [],
"source": [
"contour_selection = Contour_Selection(gp=gp, coms=coms)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "5ecdbdea-4e77-462f-a18d-5ed9b45faada",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(155, 3000)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"temporal.shape"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "51b3feea-af91-4158-97a2-8dbadd2480b5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"numpy.ndarray"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(coms[0])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "3b2011f4-046b-4396-a592-81a5128d2482",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([7.12861818, 9.84114483])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"coms[0]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "c5791bf4-a116-4093-bce1-eee7bc25221c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<fastplotlib.subplot.Subplot at 0x7f5b5d218430>"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gp.subplots[0, 1]"
]
},
{
"cell_type": "markdown",
"id": "ae9cce16-370f-44d2-b532-dc442cce379d",
"metadata": {},
"source": [
"next steps:\n",
" clicking on a contour should highlight it and the heatmap row"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading
Morty Proxy This is a proxified and sanitized view of the page, visit original site.