Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit b286aa5

Browse filesBrowse files
authored
Merge pull request #73 from kushalkolar/module-reorg-part2
Subplot attaches `add_<graphic_name>` methods
2 parents 6e052c7 + 824ae4d commit b286aa5
Copy full SHA for b286aa5

12 files changed

+128
-135
lines changed

‎examples/gridplot.ipynb

Copy file name to clipboardExpand all lines: examples/gridplot.ipynb
+14-14Lines changed: 14 additions & 14 deletions
Large diffs are not rendered by default.

‎examples/gridplot_simple.ipynb

Copy file name to clipboardExpand all lines: examples/gridplot_simple.ipynb
+16-20Lines changed: 16 additions & 20 deletions
Large diffs are not rendered by default.

‎examples/histogram.ipynb

Copy file name to clipboardExpand all lines: examples/histogram.ipynb
+4-4Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222
{
2323
"data": {
2424
"application/vnd.jupyter.widget-view+json": {
25-
"model_id": "bfd22d77d24549128dd925e4114c929e",
25+
"model_id": "27e7e540a7be408997b143ac274b2b8e",
2626
"version_major": 2,
2727
"version_minor": 0
2828
},
@@ -57,7 +57,7 @@
5757
{
5858
"data": {
5959
"text/html": [
60-
"<div class='initial-snapshot-36e4fff0aa7a4fc993c70f7cfc2aaf4a' style='position:relative;'><img src='' style='width:500.0px;height:300.0px;' /><div style='position: absolute; top:0; left:0; padding:1px 3px; background: #777; color:#fff; font-size: 90%; font-family:sans-serif; '>initial snapshot</div></div>"
60+
"<div class='initial-snapshot-ff05c3706cfd401eb97f58b6e12e6d2a' style='position:relative;'><img src='' style='width:500.0px;height:300.0px;' /><div style='position: absolute; top:0; left:0; padding:1px 3px; background: #777; color:#fff; font-size: 90%; font-family:sans-serif; '>initial snapshot</div></div>"
6161
],
6262
"text/plain": [
6363
"<jupyter_rfb._utils.Snapshot object>"
@@ -69,7 +69,7 @@
6969
{
7070
"data": {
7171
"application/vnd.jupyter.widget-view+json": {
72-
"model_id": "36e4fff0aa7a4fc993c70f7cfc2aaf4a",
72+
"model_id": "ff05c3706cfd401eb97f58b6e12e6d2a",
7373
"version_major": 2,
7474
"version_minor": 0
7575
},
@@ -83,7 +83,7 @@
8383
}
8484
],
8585
"source": [
86-
"plot.histogram(data=data, bins=100)\n",
86+
"plot.add_histogram(data=data, bins=100)\n",
8787
"\n",
8888
"plot.set_axes_visibility(True)\n",
8989
"plot.show()"

‎examples/image_widget.ipynb

Copy file name to clipboardExpand all lines: examples/image_widget.ipynb
+17-17Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@
3838
{
3939
"data": {
4040
"application/vnd.jupyter.widget-view+json": {
41-
"model_id": "6d575ba7671047ca88c36606344714fa",
41+
"model_id": "e0a67d7965234e9a9bec72f2195177fb",
4242
"version_major": 2,
4343
"version_minor": 0
4444
},
@@ -68,7 +68,7 @@
6868
{
6969
"data": {
7070
"application/vnd.jupyter.widget-view+json": {
71-
"model_id": "8de187407b7746168c8d20a428d8712e",
71+
"model_id": "23e3f9b31e9a4f4ca2f93a046a82a699",
7272
"version_major": 2,
7373
"version_minor": 0
7474
},
@@ -148,7 +148,7 @@
148148
},
149149
{
150150
"cell_type": "code",
151-
"execution_count": 10,
151+
"execution_count": 9,
152152
"id": "882162eb-c873-42df-a945-d5e05ad141c9",
153153
"metadata": {},
154154
"outputs": [],
@@ -159,14 +159,14 @@
159159
},
160160
{
161161
"cell_type": "code",
162-
"execution_count": 12,
162+
"execution_count": 10,
163163
"id": "bf9f92b6-38ad-4d78-b88c-a32d473b6462",
164164
"metadata": {},
165165
"outputs": [
166166
{
167167
"data": {
168168
"application/vnd.jupyter.widget-view+json": {
169-
"model_id": "005bcbc7755748cfaf0644e28beb3b0e",
169+
"model_id": "305e7bd04a4c42d18ccbdbb42bafc421",
170170
"version_major": 2,
171171
"version_minor": 0
172172
},
@@ -200,14 +200,14 @@
200200
},
201201
{
202202
"cell_type": "code",
203-
"execution_count": 13,
203+
"execution_count": 11,
204204
"id": "403dde31-981a-46fb-b005-1bcef19c4f2c",
205205
"metadata": {},
206206
"outputs": [
207207
{
208208
"data": {
209209
"application/vnd.jupyter.widget-view+json": {
210-
"model_id": "2b0a10be5d5b43b5a08f51a9d8f9b1dc",
210+
"model_id": "8c629365b4a744d799d18bc8364759f5",
211211
"version_major": 2,
212212
"version_minor": 0
213213
},
@@ -233,20 +233,20 @@
233233
},
234234
{
235235
"cell_type": "code",
236-
"execution_count": 14,
236+
"execution_count": 12,
237237
"id": "b59d95e2-9092-4915-beef-01661d164781",
238238
"metadata": {},
239239
"outputs": [
240240
{
241241
"data": {
242242
"text/plain": [
243-
"two: Subplot @ 0x7f91486a7a00\n",
243+
"two: Subplot @ 0x7fb6093796c0\n",
244244
" parent: None\n",
245245
" Graphics:\n",
246-
"\tfastplotlib.ImageGraphic @ 0x7f914881ceb0"
246+
"\tfastplotlib.ImageGraphic @ 0x7fb5c1935d50"
247247
]
248248
},
249-
"execution_count": 14,
249+
"execution_count": 12,
250250
"metadata": {},
251251
"output_type": "execute_result"
252252
}
@@ -265,7 +265,7 @@
265265
},
266266
{
267267
"cell_type": "code",
268-
"execution_count": 15,
268+
"execution_count": 13,
269269
"id": "a8f070db-da11-4062-95aa-f19b96351ee8",
270270
"metadata": {},
271271
"outputs": [],
@@ -283,14 +283,14 @@
283283
},
284284
{
285285
"cell_type": "code",
286-
"execution_count": 16,
286+
"execution_count": 14,
287287
"id": "b1587410-a08e-484c-8795-195a413d6374",
288288
"metadata": {},
289289
"outputs": [
290290
{
291291
"data": {
292292
"application/vnd.jupyter.widget-view+json": {
293-
"model_id": "a2e4d723405345e0a7bd7b005330d018",
293+
"model_id": "27ced610a06c43c8b4a11de135ede09e",
294294
"version_major": 2,
295295
"version_minor": 0
296296
},
@@ -319,14 +319,14 @@
319319
},
320320
{
321321
"cell_type": "code",
322-
"execution_count": 17,
322+
"execution_count": 15,
323323
"id": "3ccea6c6-9580-4720-bce8-a5507cf867a3",
324324
"metadata": {},
325325
"outputs": [
326326
{
327327
"data": {
328328
"application/vnd.jupyter.widget-view+json": {
329-
"model_id": "78a4ed0f59734124a7f3ee23e373e64a",
329+
"model_id": "41e6fb74806a4843a86f46c22d2426df",
330330
"version_major": 2,
331331
"version_minor": 0
332332
},
@@ -352,7 +352,7 @@
352352
},
353353
{
354354
"cell_type": "code",
355-
"execution_count": 18,
355+
"execution_count": 16,
356356
"id": "fd4433a9-2add-417c-a618-5891371efae0",
357357
"metadata": {},
358358
"outputs": [],

‎examples/lineplot.ipynb

Copy file name to clipboardExpand all lines: examples/lineplot.ipynb
+11-16Lines changed: 11 additions & 16 deletions
Large diffs are not rendered by default.

‎examples/scatter.ipynb

Copy file name to clipboardExpand all lines: examples/scatter.ipynb
+6-10Lines changed: 6 additions & 10 deletions
Large diffs are not rendered by default.

‎examples/simple.ipynb

Copy file name to clipboardExpand all lines: examples/simple.ipynb
+28-28Lines changed: 28 additions & 28 deletions
Large diffs are not rendered by default.

‎fastplotlib/__init__.py

Copy file name to clipboardExpand all lines: fastplotlib/__init__.py
+1Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,5 @@
11
from .plot import Plot
2+
from .layouts import GridPlot
23
from pathlib import Path
34
from wgpu.gui.auto import run
45

‎fastplotlib/layouts/_gridplot.py

Copy file name to clipboardExpand all lines: fastplotlib/layouts/_gridplot.py
+2-2Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
11
from itertools import product
22
import numpy as np
3+
from typing import *
34
import pygfx
5+
from wgpu.gui.auto import WgpuCanvas
46
from ._defaults import create_controller
57
from ._subplot import Subplot
6-
from typing import *
7-
from wgpu.gui.auto import WgpuCanvas
88

99

1010
def to_array(a) -> np.ndarray:

‎fastplotlib/layouts/_subplot.py

Copy file name to clipboardExpand all lines: fastplotlib/layouts/_subplot.py
+27-6Lines changed: 27 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,16 @@
1-
from pygfx import Scene, OrthographicCamera, PanZoomController, OrbitOrthoController, \
2-
AxesHelper, GridHelper, WgpuRenderer, Background, BackgroundMaterial
3-
from ..graphics import HeatmapGraphic
4-
from ._defaults import create_camera, create_controller
51
from typing import *
6-
from wgpu.gui.auto import WgpuCanvas
72
import numpy as np
83
from math import copysign
4+
from functools import partial
5+
from inspect import signature
6+
7+
from pygfx import Scene, OrthographicCamera, PanZoomController, OrbitOrthoController, \
8+
AxesHelper, GridHelper, WgpuRenderer, Background, BackgroundMaterial
9+
from wgpu.gui.auto import WgpuCanvas
10+
911
from ._base import PlotArea
12+
from .. import graphics
13+
from ._defaults import create_camera, create_controller
1014

1115

1216
class Subplot(PlotArea):
@@ -67,6 +71,23 @@ def __init__(
6771
self.docked_viewports[pos] = dv
6872
self.children.append(dv)
6973

74+
# attach all the add_<graphic_name> methods
75+
for graphic_cls_name in graphics.__all__:
76+
cls = getattr(graphics, graphic_cls_name)
77+
78+
pfunc = partial(self._create_graphic, cls)
79+
pfunc.__signature__ = signature(cls)
80+
pfunc.__doc__ = cls.__init__.__doc__
81+
82+
graphic_cls_name = graphic_cls_name.lower().replace("graphic", "").replace("collection", "_collection")
83+
setattr(self, f"add_{graphic_cls_name}", pfunc)
84+
85+
def _create_graphic(self, graphic_class, *args, **kwargs):
86+
graphic = graphic_class(*args, **kwargs)
87+
self.add_graphic(graphic, center=False)
88+
89+
return graphic
90+
7091
def get_rect(self):
7192
row_ix, col_ix = self.position
7293
width_canvas, height_canvas = self.renderer.logical_size
@@ -105,7 +126,7 @@ def add_animations(self, *funcs: callable):
105126
def add_graphic(self, graphic, center: bool = True):
106127
super(Subplot, self).add_graphic(graphic, center)
107128

108-
if isinstance(graphic, HeatmapGraphic):
129+
if isinstance(graphic, graphics.HeatmapGraphic):
109130
self.controller.scale.y = copysign(self.controller.scale.y, -1)
110131

111132
def set_axes_visibility(self, visible: bool):

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.