Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 40a59cd

Browse filesBrowse files
authored
Merge branch 'master' into interaction
2 parents 16922e7 + bca7620 commit 40a59cd
Copy full SHA for 40a59cd

20 files changed

+378
-167
lines changed

‎README.md

Copy file name to clipboardExpand all lines: README.md
+15-9Lines changed: 15 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -6,13 +6,13 @@ A fast plotting library built using the `pygfx` render engine that can use [Vulk
66
Checkout pygfx!
77
https://github.com/pygfx/pygfx
88

9-
`fastplotlib` is in the alpha stage and experimental but you're welcome to try it out or contribute!
9+
`fastplotlib` is in the alpha stage and experimental, but you're welcome to try it out or contribute!
1010

1111
Questions, ideas? Chat on gitter: https://gitter.im/fastplotlib/community?utm_source=share-link&utm_medium=link&utm_campaign=share-link
1212

1313
# Examples
1414

15-
**See the examples directory. Start out with `simple.ipynb` which uses the high level API.**
15+
**See the examples directory. Start out with `simple.ipynb`.**
1616

1717
### Simple image plot
1818
```python
@@ -21,8 +21,8 @@ import numpy as np
2121

2222
plot = Plot()
2323

24-
data = np.random.rand(512, 512) * 255
25-
plot.image(data=data, vmin=0, vmax=255, cmap='viridis')
24+
data = np.random.rand(512, 512)
25+
plot.image(data=data)
2626

2727
plot.show()
2828
```
@@ -34,14 +34,14 @@ import numpy as np
3434

3535
plot = Plot()
3636

37-
data = np.random.rand(512, 512) * 255
38-
image = plot.image(data=data, vmin=0, vmax=255, cmap='viridis')
37+
data = np.random.rand(512, 512)
38+
image = plot.image(data=data)
3939

4040
def update_data():
41-
new_data = np.random.rand(512, 512) * 255
41+
new_data = np.random.rand(512, 512)
4242
image.update_data(new_data)
4343

44-
plot.add_animations([update_data])
44+
plot.add_animations(update_data)
4545

4646
plot.show()
4747
```
@@ -56,6 +56,12 @@ pip install git+https://github.com/kushalkolar/fastplotlib.git
5656

5757
Note: do not download the version that is currently on PYPI (i.e. don't just do `pip install fastplotlib`, it is outdated (we're waiting for the next release of `pygfx`)
5858

59+
**Installing `simplejpeg` is recommended for faster plotting in notebooks using rfb. You will need C compilers setup on your computer to install it:**
60+
61+
```bash
62+
pip install simplejpeg
63+
```
64+
5965
Clone or download the repo to try the examples
6066

6167
```bash
@@ -87,7 +93,7 @@ jupyter lab
8793
For more information see: https://github.com/pygfx/wgpu-py#platform-requirements
8894

8995
### Windows:
90-
Apparently Vulkan should be installed by default on Windows 11.
96+
Vulkan should be installed by default on Windows 11.
9197

9298
### Linux:
9399
Debian based distros:

‎examples/gridplot.ipynb

Copy file name to clipboardExpand all lines: examples/gridplot.ipynb
+14-14Lines changed: 14 additions & 14 deletions
Large diffs are not rendered by default.

‎examples/gridplot_simple.ipynb

Copy file name to clipboardExpand all lines: examples/gridplot_simple.ipynb
+16-20Lines changed: 16 additions & 20 deletions
Large diffs are not rendered by default.

‎examples/histogram.ipynb

Copy file name to clipboardExpand all lines: examples/histogram.ipynb
+4-4Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222
{
2323
"data": {
2424
"application/vnd.jupyter.widget-view+json": {
25-
"model_id": "bfd22d77d24549128dd925e4114c929e",
25+
"model_id": "27e7e540a7be408997b143ac274b2b8e",
2626
"version_major": 2,
2727
"version_minor": 0
2828
},
@@ -57,7 +57,7 @@
5757
{
5858
"data": {
5959
"text/html": [
60-
"<div class='initial-snapshot-36e4fff0aa7a4fc993c70f7cfc2aaf4a' style='position:relative;'><img src='' style='width:500.0px;height:300.0px;' /><div style='position: absolute; top:0; left:0; padding:1px 3px; background: #777; color:#fff; font-size: 90%; font-family:sans-serif; '>initial snapshot</div></div>"
60+
"<div class='initial-snapshot-ff05c3706cfd401eb97f58b6e12e6d2a' style='position:relative;'><img src='' style='width:500.0px;height:300.0px;' /><div style='position: absolute; top:0; left:0; padding:1px 3px; background: #777; color:#fff; font-size: 90%; font-family:sans-serif; '>initial snapshot</div></div>"
6161
],
6262
"text/plain": [
6363
"<jupyter_rfb._utils.Snapshot object>"
@@ -69,7 +69,7 @@
6969
{
7070
"data": {
7171
"application/vnd.jupyter.widget-view+json": {
72-
"model_id": "36e4fff0aa7a4fc993c70f7cfc2aaf4a",
72+
"model_id": "ff05c3706cfd401eb97f58b6e12e6d2a",
7373
"version_major": 2,
7474
"version_minor": 0
7575
},
@@ -83,7 +83,7 @@
8383
}
8484
],
8585
"source": [
86-
"plot.histogram(data=data, bins=100)\n",
86+
"plot.add_histogram(data=data, bins=100)\n",
8787
"\n",
8888
"plot.set_axes_visibility(True)\n",
8989
"plot.show()"

‎examples/image_widget.ipynb

Copy file name to clipboardExpand all lines: examples/image_widget.ipynb
+17-17Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@
3838
{
3939
"data": {
4040
"application/vnd.jupyter.widget-view+json": {
41-
"model_id": "6d575ba7671047ca88c36606344714fa",
41+
"model_id": "e0a67d7965234e9a9bec72f2195177fb",
4242
"version_major": 2,
4343
"version_minor": 0
4444
},
@@ -68,7 +68,7 @@
6868
{
6969
"data": {
7070
"application/vnd.jupyter.widget-view+json": {
71-
"model_id": "8de187407b7746168c8d20a428d8712e",
71+
"model_id": "23e3f9b31e9a4f4ca2f93a046a82a699",
7272
"version_major": 2,
7373
"version_minor": 0
7474
},
@@ -148,7 +148,7 @@
148148
},
149149
{
150150
"cell_type": "code",
151-
"execution_count": 10,
151+
"execution_count": 9,
152152
"id": "882162eb-c873-42df-a945-d5e05ad141c9",
153153
"metadata": {},
154154
"outputs": [],
@@ -159,14 +159,14 @@
159159
},
160160
{
161161
"cell_type": "code",
162-
"execution_count": 12,
162+
"execution_count": 10,
163163
"id": "bf9f92b6-38ad-4d78-b88c-a32d473b6462",
164164
"metadata": {},
165165
"outputs": [
166166
{
167167
"data": {
168168
"application/vnd.jupyter.widget-view+json": {
169-
"model_id": "005bcbc7755748cfaf0644e28beb3b0e",
169+
"model_id": "305e7bd04a4c42d18ccbdbb42bafc421",
170170
"version_major": 2,
171171
"version_minor": 0
172172
},
@@ -200,14 +200,14 @@
200200
},
201201
{
202202
"cell_type": "code",
203-
"execution_count": 13,
203+
"execution_count": 11,
204204
"id": "403dde31-981a-46fb-b005-1bcef19c4f2c",
205205
"metadata": {},
206206
"outputs": [
207207
{
208208
"data": {
209209
"application/vnd.jupyter.widget-view+json": {
210-
"model_id": "2b0a10be5d5b43b5a08f51a9d8f9b1dc",
210+
"model_id": "8c629365b4a744d799d18bc8364759f5",
211211
"version_major": 2,
212212
"version_minor": 0
213213
},
@@ -233,20 +233,20 @@
233233
},
234234
{
235235
"cell_type": "code",
236-
"execution_count": 14,
236+
"execution_count": 12,
237237
"id": "b59d95e2-9092-4915-beef-01661d164781",
238238
"metadata": {},
239239
"outputs": [
240240
{
241241
"data": {
242242
"text/plain": [
243-
"two: Subplot @ 0x7f91486a7a00\n",
243+
"two: Subplot @ 0x7fb6093796c0\n",
244244
" parent: None\n",
245245
" Graphics:\n",
246-
"\tfastplotlib.ImageGraphic @ 0x7f914881ceb0"
246+
"\tfastplotlib.ImageGraphic @ 0x7fb5c1935d50"
247247
]
248248
},
249-
"execution_count": 14,
249+
"execution_count": 12,
250250
"metadata": {},
251251
"output_type": "execute_result"
252252
}
@@ -265,7 +265,7 @@
265265
},
266266
{
267267
"cell_type": "code",
268-
"execution_count": 15,
268+
"execution_count": 13,
269269
"id": "a8f070db-da11-4062-95aa-f19b96351ee8",
270270
"metadata": {},
271271
"outputs": [],
@@ -283,14 +283,14 @@
283283
},
284284
{
285285
"cell_type": "code",
286-
"execution_count": 16,
286+
"execution_count": 14,
287287
"id": "b1587410-a08e-484c-8795-195a413d6374",
288288
"metadata": {},
289289
"outputs": [
290290
{
291291
"data": {
292292
"application/vnd.jupyter.widget-view+json": {
293-
"model_id": "a2e4d723405345e0a7bd7b005330d018",
293+
"model_id": "27ced610a06c43c8b4a11de135ede09e",
294294
"version_major": 2,
295295
"version_minor": 0
296296
},
@@ -319,14 +319,14 @@
319319
},
320320
{
321321
"cell_type": "code",
322-
"execution_count": 17,
322+
"execution_count": 15,
323323
"id": "3ccea6c6-9580-4720-bce8-a5507cf867a3",
324324
"metadata": {},
325325
"outputs": [
326326
{
327327
"data": {
328328
"application/vnd.jupyter.widget-view+json": {
329-
"model_id": "78a4ed0f59734124a7f3ee23e373e64a",
329+
"model_id": "41e6fb74806a4843a86f46c22d2426df",
330330
"version_major": 2,
331331
"version_minor": 0
332332
},
@@ -352,7 +352,7 @@
352352
},
353353
{
354354
"cell_type": "code",
355-
"execution_count": 18,
355+
"execution_count": 16,
356356
"id": "fd4433a9-2add-417c-a618-5891371efae0",
357357
"metadata": {},
358358
"outputs": [],

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.