|
| 1 | +# Copyright 2018 Google Inc. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import os |
| 16 | +import time |
| 17 | + |
| 18 | +import pytest |
| 19 | + |
| 20 | + |
| 21 | +@pytest.fixture |
| 22 | +def temp_dataset(): |
| 23 | + from google.cloud import bigquery |
| 24 | + |
| 25 | + client = bigquery.Client() |
| 26 | + dataset_id = "temp_dataset_{}".format(int(time.time() * 1000)) |
| 27 | + dataset_ref = bigquery.DatasetReference(client.project, dataset_id) |
| 28 | + dataset = client.create_dataset(bigquery.Dataset(dataset_ref)) |
| 29 | + yield dataset |
| 30 | + client.delete_dataset(dataset, delete_contents=True) |
| 31 | + |
| 32 | + |
| 33 | +def test_client_library_query(): |
| 34 | + # [START bigquery_migration_client_library_query] |
| 35 | + from google.cloud import bigquery |
| 36 | + |
| 37 | + client = bigquery.Client() |
| 38 | + sql = """ |
| 39 | + SELECT name |
| 40 | + FROM `bigquery-public-data.usa_names.usa_1910_current` |
| 41 | + WHERE state = 'TX' |
| 42 | + LIMIT 100 |
| 43 | + """ |
| 44 | + |
| 45 | + # Run a Standard SQL query using the environment's default project |
| 46 | + df = client.query(sql).to_dataframe() |
| 47 | + |
| 48 | + # Run a Standard SQL query with the project set explicitly |
| 49 | + project_id = 'your-project-id' |
| 50 | + # [END bigquery_migration_client_library_query] |
| 51 | + assert len(df) > 0 |
| 52 | + project_id = os.environ['GCLOUD_PROJECT'] |
| 53 | + # [START bigquery_migration_client_library_query] |
| 54 | + df = client.query(sql, project=project_id).to_dataframe() |
| 55 | + # [END bigquery_migration_client_library_query] |
| 56 | + assert len(df) > 0 |
| 57 | + |
| 58 | + |
| 59 | +def test_pandas_gbq_query(): |
| 60 | + # [START bigquery_migration_pandas_gbq_query] |
| 61 | + import pandas |
| 62 | + |
| 63 | + sql = """ |
| 64 | + SELECT name |
| 65 | + FROM `bigquery-public-data.usa_names.usa_1910_current` |
| 66 | + WHERE state = 'TX' |
| 67 | + LIMIT 100 |
| 68 | + """ |
| 69 | + |
| 70 | + # Run a Standard SQL query using the environment's default project |
| 71 | + df = pandas.read_gbq(sql, dialect='standard') |
| 72 | + |
| 73 | + # Run a Standard SQL query with the project set explicitly |
| 74 | + project_id = 'your-project-id' |
| 75 | + # [END bigquery_migration_pandas_gbq_query] |
| 76 | + assert len(df) > 0 |
| 77 | + project_id = os.environ['GCLOUD_PROJECT'] |
| 78 | + # [START bigquery_migration_pandas_gbq_query] |
| 79 | + df = pandas.read_gbq(sql, project_id=project_id, dialect='standard') |
| 80 | + # [END bigquery_migration_pandas_gbq_query] |
| 81 | + assert len(df) > 0 |
| 82 | + |
| 83 | + |
| 84 | +def test_client_library_legacy_query(): |
| 85 | + # [START bigquery_migration_client_library_query_legacy] |
| 86 | + from google.cloud import bigquery |
| 87 | + |
| 88 | + client = bigquery.Client() |
| 89 | + sql = """ |
| 90 | + SELECT name |
| 91 | + FROM [bigquery-public-data:usa_names.usa_1910_current] |
| 92 | + WHERE state = 'TX' |
| 93 | + LIMIT 100 |
| 94 | + """ |
| 95 | + query_config = bigquery.QueryJobConfig() |
| 96 | + query_config.use_legacy_sql = True |
| 97 | + |
| 98 | + # Run a Standard SQL query using the environment's default project |
| 99 | + df = client.query(sql, job_config=query_config).to_dataframe() |
| 100 | + # [END bigquery_migration_client_library_query_legacy] |
| 101 | + assert len(df) > 0 |
| 102 | + |
| 103 | + |
| 104 | +def test_pandas_gbq_legacy_query(): |
| 105 | + # [START bigquery_migration_pandas_gbq_query_legacy] |
| 106 | + import pandas |
| 107 | + |
| 108 | + sql = """ |
| 109 | + SELECT name |
| 110 | + FROM [bigquery-public-data:usa_names.usa_1910_current] |
| 111 | + WHERE state = 'TX' |
| 112 | + LIMIT 100 |
| 113 | + """ |
| 114 | + |
| 115 | + df = pandas.read_gbq(sql, dialect='legacy') |
| 116 | + # [END bigquery_migration_pandas_gbq_query_legacy] |
| 117 | + assert len(df) > 0 |
| 118 | + |
| 119 | + |
| 120 | +def test_client_library_query_with_parameters(): |
| 121 | + # [START bigquery_migration_client_library_query_parameters] |
| 122 | + from google.cloud import bigquery |
| 123 | + |
| 124 | + client = bigquery.Client() |
| 125 | + sql = """ |
| 126 | + SELECT name |
| 127 | + FROM `bigquery-public-data.usa_names.usa_1910_current` |
| 128 | + WHERE state = @state |
| 129 | + LIMIT @limit |
| 130 | + """ |
| 131 | + query_config = bigquery.QueryJobConfig() |
| 132 | + query_config.query_parameters = [ |
| 133 | + bigquery.ScalarQueryParameter('state', 'STRING', 'TX'), |
| 134 | + bigquery.ScalarQueryParameter('limit', 'INTEGER', 100) |
| 135 | + ] |
| 136 | + df = client.query(sql, job_config=query_config).to_dataframe() |
| 137 | + # [END bigquery_migration_client_library_query_parameters] |
| 138 | + assert len(df) > 0 |
| 139 | + |
| 140 | + |
| 141 | +def test_pandas_gbq_query_with_parameters(): |
| 142 | + # [START bigquery_migration_pandas_gbq_query_parameters] |
| 143 | + import pandas |
| 144 | + |
| 145 | + sql = """ |
| 146 | + SELECT name |
| 147 | + FROM `bigquery-public-data.usa_names.usa_1910_current` |
| 148 | + WHERE state = @state |
| 149 | + LIMIT @limit |
| 150 | + """ |
| 151 | + query_config = { |
| 152 | + 'query': { |
| 153 | + 'parameterMode': 'NAMED', |
| 154 | + 'queryParameters': [ |
| 155 | + { |
| 156 | + 'name': 'state', |
| 157 | + 'parameterType': {'type': 'STRING'}, |
| 158 | + 'parameterValue': {'value': 'TX'} |
| 159 | + }, |
| 160 | + { |
| 161 | + 'name': 'limit', |
| 162 | + 'parameterType': {'type': 'INTEGER'}, |
| 163 | + 'parameterValue': {'value': 100} |
| 164 | + } |
| 165 | + ] |
| 166 | + } |
| 167 | + } |
| 168 | + df = pandas.read_gbq(sql, configuration=query_config) |
| 169 | + # [END bigquery_migration_pandas_gbq_query_parameters] |
| 170 | + assert len(df) > 0 |
| 171 | + |
| 172 | + |
| 173 | +def test_client_library_upload_from_dataframe(temp_dataset): |
| 174 | + # [START bigquery_migration_client_library_upload_from_dataframe] |
| 175 | + from google.cloud import bigquery |
| 176 | + import pandas |
| 177 | + |
| 178 | + df = pandas.DataFrame( |
| 179 | + { |
| 180 | + 'my_string': ['a', 'b', 'c'], |
| 181 | + 'my_int64': [1, 2, 3], |
| 182 | + 'my_float64': [4.0, 5.0, 6.0], |
| 183 | + } |
| 184 | + ) |
| 185 | + client = bigquery.Client() |
| 186 | + dataset_ref = client.dataset('my_dataset') |
| 187 | + # [END bigquery_migration_client_library_upload_from_dataframe] |
| 188 | + dataset_ref = client.dataset(temp_dataset.dataset_id) |
| 189 | + # [START bigquery_migration_client_library_upload_from_dataframe] |
| 190 | + table_ref = dataset_ref.table('new_table') |
| 191 | + client.load_table_from_dataframe(df, table_ref).result() |
| 192 | + # [END bigquery_migration_client_library_upload_from_dataframe] |
| 193 | + client = bigquery.Client() |
| 194 | + table = client.get_table(table_ref) |
| 195 | + assert table.num_rows == 3 |
| 196 | + |
| 197 | + |
| 198 | +def test_pandas_gbq_upload_from_dataframe(temp_dataset): |
| 199 | + from google.cloud import bigquery |
| 200 | + # [START bigquery_migration_pandas_gbq_upload_from_dataframe] |
| 201 | + import pandas |
| 202 | + |
| 203 | + df = pandas.DataFrame( |
| 204 | + { |
| 205 | + 'my_string': ['a', 'b', 'c'], |
| 206 | + 'my_int64': [1, 2, 3], |
| 207 | + 'my_float64': [4.0, 5.0, 6.0], |
| 208 | + } |
| 209 | + ) |
| 210 | + full_table_id = 'my_dataset.new_table' |
| 211 | + project_id = 'my-project-id' |
| 212 | + # [END bigquery_migration_pandas_gbq_upload_from_dataframe] |
| 213 | + table_id = 'new_table' |
| 214 | + full_table_id = '{}.{}'.format(temp_dataset.dataset_id, table_id) |
| 215 | + project_id = os.environ['GCLOUD_PROJECT'] |
| 216 | + # [START bigquery_migration_pandas_gbq_upload_from_dataframe] |
| 217 | + df.to_gbq(full_table_id, project_id=project_id) |
| 218 | + # [END bigquery_migration_pandas_gbq_upload_from_dataframe] |
| 219 | + client = bigquery.Client() |
| 220 | + table = client.get_table(temp_dataset.table(table_id)) |
| 221 | + assert table.num_rows == 3 |
0 commit comments