Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 8ab58d7

Browse filesBrowse files
authored
docs: update MCS paper link (#62)
1 parent ccea9bc commit 8ab58d7
Copy full SHA for 8ab58d7

File tree

2 files changed

+20
-20
lines changed
Filter options

2 files changed

+20
-20
lines changed

‎README.md

Copy file name to clipboardExpand all lines: README.md
+13-13Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ We warmly welcome contributions from everyone, whether you've found a typo, a bu
1818
| | [WikiSQL](https://github.com/salesforce/WikiSQL#leaderboard) | [Spider](https://yale-lily.github.io/spider)<br/>Exact Match(EM) | [Spider](https://yale-lily.github.io/spider)<br/>Exact Execution(EX) | [BIRD](https://bird-bench.github.io/)<br/>Valid Efficiency Score (VES) | [BIRD](https://bird-bench.github.io/)<br/>Execution Accuracy (EX) |
1919
|:----:|:-----------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------:|
2020
| 🏆1 | **93.0** <br/>(2021/05-[SeaD+Execution-Guided Decoding](https://arxiv.org/pdf/2105.07911.pdf)) | **81.5** <br/>(2023/11-MiniSeek) | **91.2** <br/>(2023/11-MiniSeek) | **80.40** <br/>(2024/05-[ExSL + granite-20b-code](https://arxiv.org/abs/2405.04324)) | **67.86** <br/>(2024/05-[ExSL + granite-20b-code](https://arxiv.org/abs/2405.04324)) |
21-
| 🥈2 | 92.7 <br/>(2021/03-[SDSQL+Execution-Guided Decoding](https://arxiv.org/pdf/2103.04399.pdf)) | 74.0 <br/>(2022/09-[Graphix-3B + PICARD](https://arxiv.org/pdf/2301.07507.pdf)) | 86.6 <br/>(2023/08-[DAIL-SQL + GPT-4 + Self-Consistency](https://arxiv.org/pdf/2308.15363.pdf)) | 71.35 <br/>(2024/01-MCS-SQL + GPT-4) | 65.45 <br/>(2024/01-MCS-SQL + GPT-4) |
21+
| 🥈2 | 92.7 <br/>(2021/03-[SDSQL+Execution-Guided Decoding](https://arxiv.org/pdf/2103.04399.pdf)) | 74.0 <br/>(2022/09-[Graphix-3B + PICARD](https://arxiv.org/pdf/2301.07507.pdf)) | 86.6 <br/>(2023/08-[DAIL-SQL + GPT-4 + Self-Consistency](https://arxiv.org/pdf/2308.15363.pdf)) | 71.35 <br/>(2024/01-[MCS-SQL + GPT-4](https://arxiv.org/abs/2405.07467)) | 65.45 <br/>(2024/01-[MCS-SQL + GPT-4](https://arxiv.org/abs/2405.07467)) |
2222
| 🥉3 | 92.5 <br/>(2020/11-[IE-SQL+Execution-Guided Decoding](https://aclanthology.org/2020.emnlp-main.563.pdf)) | 73.9 <br/>(2022/09-CatSQL + GraPPa) | 86.2 <br/>(2023/08-[DAIL-SQL + GPT-4](https://arxiv.org/pdf/2308.15363.pdf)) | 69.56 <br/>(2024/04-GRA-SQL) | 64.95 <br/>(2024/04-OpenSearch-SQL,v1 + GPT-4) |
2323
| 4 | 92.2 <br/>(2020/03-[HydraNet+Execution-Guided Decoding](https://arxiv.org/pdf/2008.04759.pdf)) | 73.1 <br/>(2022/09-[SHiP + PICARD](https://arxiv.org/pdf/2212.08785.pdf)) | 85.6 <br/>(2023/10-DPG-SQL + GPT-4 + Self-Correction) | 68.90 <br/>(2024/02-PB-SQL) | 64.84 <br/>(2024/02-PB-SQL v1) |
2424
| 5 | 91.9 <br/>(2020/12-[BRIDGE+Execution-Guided Decoding](https://arxiv.org/pdf/2012.12627.pdf)) | 72.9 <br/>(2022/05-[G³R + LGESQL + ELECTRA](https://aclanthology.org/2023.findings-acl.23.pdf)) | 85.3 <br/>(2023/04-[DIN-SQL + GPT-4](https://arxiv.org/pdf/2304.11015.pdf)) | 68.80 <br/>(2024/04-OpenSearch-SQL,v1 + GPT-4) | 63.39 <br/>(2024/02-SENSE 13B) |
@@ -335,18 +335,18 @@ for Text-to-SQL
335335
- 2023/09, Microsoft Research proposes the open source language model phi-1.5, a Transformer with 1.3 billion parameters, which was trained using the same data sources as [phi-1](https://huggingface.co/microsoft/phi-1), augmented with a new data source that consists of various NLP synthetic texts. When assessed against benchmarks testing common sense, language understanding, and logical reasoning, phi-1.5 demonstrates a nearly state-of-the-art performance among models with less than 10 billion parameters. 2023/12, They propose [Phi-2](https://huggingface.co/microsoft/phi-2), a 2.7 billion-parameter language model that demonstrates outstanding reasoning and language understanding capabilities, showcasing state-of-the-art performance among base language models with less than 13 billion parameters.
336336

337337
- Mistral-7B [[paper](https://arxiv.org/pdf/2310.06825.pdf)]
338-
[[code](https://github.com/mistralai/mistral-src)]
339-
[[model](https://huggingface.co/mistralai/Mistral-7B-v0.1)]
338+
[[code](https://github.com/mistralai/mistral-src)]
339+
[[model](https://huggingface.co/mistralai/Mistral-7B-v0.1)]
340340
- 2023/10, Mistral-AI company proposes the open source LLM Mistral 7B, a 7–billion-parameter language model engineered for superior performance and efficiency. Mistral 7B outperforms the best open 13B model (Llama 2) across all evaluated benchmarks, and the best released 34B model (Llama 1) in reasoning, mathematics, and code generation. They also provide a model fine-tuned to follow instructions, Mistral 7B – Instruct, that surpasses Llama 2 13B–chat model both on human and automated benchmarks. 2023/12,They propose the open source LLM Mixtral-8x7B, a pretrained generative Sparse Mixture of Experts, which outperforms Llama 2 70B on most benchmarks.
341341

342342
- Deepseek [[paper](https://arxiv.org/pdf/2401.02954.pdf)]
343-
[[code](https://github.com/deepseek-ai/DeepSeek-LLM)]
344-
[[model](https://huggingface.co/deepseek-ai)]
343+
[[code](https://github.com/deepseek-ai/DeepSeek-LLM)]
344+
[[model](https://huggingface.co/deepseek-ai)]
345345
- 2023/11, DeepSeek-AI company proposes the open source LLM deepseek, which has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. Similarly, the deepseek LLM mainly has two categories: base and chat, with two parameter formats of 7b and 67b respectively. Data from its paper shows that deepSeek LLM 67b surpasses LLaMA-2 70b across a range of benchmarks, especially in the domains of code, mathematics, and reasoning. Furthermore, DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5.
346346

347347
- MiniCPM [[paper](https://shengdinghu.notion.site/MiniCPM-c805a17c5c8046398914e47f0542095a)]
348-
[[code](https://github.com/OpenBMB/MiniCPM)]
349-
[[model](https://huggingface.co/openbmb)]
348+
[[code](https://github.com/OpenBMB/MiniCPM)]
349+
[[model](https://huggingface.co/openbmb)]
350350
- 2024/02, ModelBest Inc. and TsinghuaNLP proposes the open source LLM MiniCPM, which is an End-Side LLM, with only 2.4B parameters excluding embeddings (2.7B in total). It is worth that MiniCPM has very close performance compared with Mistral-7B on open-sourced general benchmarks with better ability on Chinese, Mathematics and Coding after SFT. The overall performance exceeds Llama2-13B, MPT-30B, Falcon-40B, etc.
351351

352352
- Mixtral-8x22B [[paper](https://mistral.ai/news/mixtral-8x22b/)] [[code](https://docs.mistral.ai/getting-started/open_weight_models/)] [[model](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1)]
@@ -377,8 +377,8 @@ for Text-to-SQL
377377

378378
- RRHF [[paper](https://arxiv.org/pdf/2304.05302.pdf)] [[code](https://github.com/GanjinZero/RRHF)]
379379
- 2023/04, Alibaba proposes a novel learning paradigm called RRHF(Rank Responses to Align Language Models
380-
with Human Feedback without tears), which can be tuned as easily as fine-tuning and achieve a similar
381-
performance as PPO in HH dataset.
380+
with Human Feedback without tears), which can be tuned as easily as fine-tuning and achieve a similar
381+
performance as PPO in HH dataset.
382382

383383
- QLoRA [[paper](https://arxiv.org/pdf/2305.14314.pdf)] [[code](https://github.com/artidoro/qlora)]
384384
- 2023/05, Washington University proposes the qlora method, based on the frozen 4bit quantization model, combined with LoRA method training, which further reduces the cost of fine-tuning.
@@ -454,8 +454,8 @@ performance as PPO in HH dataset.
454454
- This project is based on the LLaMa 2 7b model for Text-to-SQL fine-tuning, which includes a complete training, fine-tuning, and evaluation process.
455455

456456
- [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning)
457-
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
458-
![last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning?color=green)
457+
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
458+
![last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning?color=green)
459459
- Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, Chat
460460

461461
## 🤝 Friendship Links
@@ -465,8 +465,8 @@ performance as PPO in HH dataset.
465465
- They are a team of technology enthusiasts from internet companies and NLP graduate students who are passionate about open source projects. Their focus is on developing solutions that protect the privacy and security of databases and large language models. Their aim is to ensure that the abilities of these models remain absolutely private, secure, and under control.
466466

467467
- [Awesome-AIGC-Tutorials](https://github.com/luban-agi/Awesome-AIGC-Tutorials)
468-
[![GitHub Repo stars](https://img.shields.io/github/stars/luban-agi/Awesome-AIGC-Tutorials?style=social)](https://github.com/luban-agi/Awesome-AIGC-Tutorials/stargazers)
469-
![last commit](https://img.shields.io/github/last-commit/luban-agi/Awesome-AIGC-Tutorials?color=green)
468+
[![GitHub Repo stars](https://img.shields.io/github/stars/luban-agi/Awesome-AIGC-Tutorials?style=social)](https://github.com/luban-agi/Awesome-AIGC-Tutorials/stargazers)
469+
![last commit](https://img.shields.io/github/last-commit/luban-agi/Awesome-AIGC-Tutorials?color=green)
470470
- Awesome AIGC Tutorials houses a curated collection of tutorials and resources spanning across Large Language Models, AI Painting, and related fields. Discover in-depth insights and knowledge catered for both beginners and advanced AI enthusiasts.
471471

472472
[![Star History Chart](https://api.star-history.com/svg?repos=eosphoros-ai/Awesome-Text2SQL&type=Date)](https://star-history.com/#eosphoros-ai/Awesome-Text2SQL)

‎README.zh.md

Copy file name to clipboardExpand all lines: README.zh.md
+7-7Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@
2121
| | [WikiSQL](https://github.com/salesforce/WikiSQL#leaderboard) | [Spider](https://yale-lily.github.io/spider)<br/>Exact Match(EM) | [Spider](https://yale-lily.github.io/spider)<br/>Exact Execution(EX) | [BIRD](https://bird-bench.github.io/)<br/>Valid Efficiency Score (VES) | [BIRD](https://bird-bench.github.io/)<br/>Execution Accuracy (EX) |
2222
|:----:|:-----------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------:|
2323
| 🏆1 | **93.0** <br/>(2021/05-[SeaD+Execution-Guided Decoding](https://arxiv.org/pdf/2105.07911.pdf)) | **81.5** <br/>(2023/11-MiniSeek) | **91.2** <br/>(2023/11-MiniSeek) | **80.40** <br/>(2024/05-[ExSL + granite-20b-code](https://arxiv.org/abs/2405.04324)) | **67.86** <br/>(2024/05-[ExSL + granite-20b-code](https://arxiv.org/abs/2405.04324)) |
24-
| 🥈2 | 92.7 <br/>(2021/03-[SDSQL+Execution-Guided Decoding](https://arxiv.org/pdf/2103.04399.pdf)) | 74.0 <br/>(2022/09-[Graphix-3B + PICARD](https://arxiv.org/pdf/2301.07507.pdf)) | 86.6 <br/>(2023/08-[DAIL-SQL + GPT-4 + Self-Consistency](https://arxiv.org/pdf/2308.15363.pdf)) | 71.35 <br/>(2024/01-MCS-SQL + GPT-4) | 65.45 <br/>(2024/01-MCS-SQL + GPT-4) |
24+
| 🥈2 | 92.7 <br/>(2021/03-[SDSQL+Execution-Guided Decoding](https://arxiv.org/pdf/2103.04399.pdf)) | 74.0 <br/>(2022/09-[Graphix-3B + PICARD](https://arxiv.org/pdf/2301.07507.pdf)) | 86.6 <br/>(2023/08-[DAIL-SQL + GPT-4 + Self-Consistency](https://arxiv.org/pdf/2308.15363.pdf)) | 71.35 <br/>(2024/01-[MCS-SQL + GPT-4](https://arxiv.org/abs/2405.07467)) | 65.45 <br/>(2024/01-[MCS-SQL + GPT-4](https://arxiv.org/abs/2405.07467)) |
2525
| 🥉3 | 92.5 <br/>(2020/11-[IE-SQL+Execution-Guided Decoding](https://aclanthology.org/2020.emnlp-main.563.pdf)) | 73.9 <br/>(2022/09-CatSQL + GraPPa) | 86.2 <br/>(2023/08-[DAIL-SQL + GPT-4](https://arxiv.org/pdf/2308.15363.pdf)) | 69.56 <br/>(2024/04-GRA-SQL) | 64.95 <br/>(2024/04-OpenSearch-SQL,v1 + GPT-4) |
2626
| 4 | 92.2 <br/>(2020/03-[HydraNet+Execution-Guided Decoding](https://arxiv.org/pdf/2008.04759.pdf)) | 73.1 <br/>(2022/09-[SHiP + PICARD](https://arxiv.org/pdf/2212.08785.pdf)) | 85.6 <br/>(2023/10-DPG-SQL + GPT-4 + Self-Correction) | 68.90 <br/>(2024/02-PB-SQL) | 64.84 <br/>(2024/02-PB-SQL v1) |
2727
| 5 | 91.9 <br/>(2020/12-[BRIDGE+Execution-Guided Decoding](https://arxiv.org/pdf/2012.12627.pdf)) | 72.9 <br/>(2022/05-[G³R + LGESQL + ELECTRA](https://aclanthology.org/2023.findings-acl.23.pdf)) | 85.3 <br/>(2023/04-[DIN-SQL + GPT-4](https://arxiv.org/pdf/2304.11015.pdf)) | 68.80 <br/>(2024/04-OpenSearch-SQL,v1 + GPT-4) | 63.39 <br/>(2024/02-SENSE 13B) |
@@ -358,8 +358,8 @@ for Text-to-SQL
358358
- 2023年11月, DeepSeek-AI公司提出了开源LLM deepseek,它是在包含2万亿个中英文token的庞大数据集上从头开始训练的。同样,deepseek LLM主要有base和chat两大类,分别有7b和67b两种参数格式。论文中的数据显示,deepSeek LLM 67b 在一系列基准测试中都超越了LLaMA2 70b,特别是在代码、数学和推理领域。 此外,与GPT-3.5相比,DeepSeek LLM 67B Chat 表现出卓越的性能。
359359

360360
- MiniCPM [[paper](https://shengdinghu.notion.site/MiniCPM-c805a17c5c8046398914e47f0542095a)]
361-
[[code](https://github.com/OpenBMB/MiniCPM)]
362-
[[model](https://huggingface.co/openbmb)]
361+
[[code](https://github.com/OpenBMB/MiniCPM)]
362+
[[model](https://huggingface.co/openbmb)]
363363
- 2024年2月, 面壁智能与清华大学自然语言处理实验室开源了大模型MiniCPM,这是一个系列端侧大模型,主体语言模型 MiniCPM-2B 仅有 24亿(2.4B)的非词嵌入参数量, 总计2.7B参数量。值得注意的是,经过 SFT 后,MiniCPM 在公开综合性评测集上,MiniCPM 与 Mistral-7B相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。
364364

365365
- Mixtral-8x22B [[paper](https://mistral.ai/news/mixtral-8x22b/)][[code](https://docs.mistral.ai/getting-started/open_weight_models/)] [[model](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1)]
@@ -463,8 +463,8 @@ for Text-to-SQL
463463
- 项目基于LLaMa 2 7b模型进行Text-to-SQL微调,有完整的训练、微调、评估流程。
464464

465465
- [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning)
466-
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
467-
![last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning?color=green)
466+
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
467+
![last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning?color=green)
468468
- 这是一个易于使用的LLM微调框架,支持LLaMA-2、BLOOM、Falcon、Baichuan、Qwen、ChatGLM2等。
469469

470470

@@ -475,8 +475,8 @@ for Text-to-SQL
475475
- 他们是一支由来自互联网公司的技术爱好者和热衷于开源项目的NLP研究生组成的团队。他们的重点是开发保护数据库和大型语言模型的隐私和安全的解决方案。他们的目标是确保这些模型的能力保持绝对私密、安全和受控。
476476

477477
- [Awesome-AIGC-Tutorials](https://github.com/luban-agi/Awesome-AIGC-Tutorials)
478-
[![GitHub Repo stars](https://img.shields.io/github/stars/luban-agi/Awesome-AIGC-Tutorials?style=social)](https://github.com/luban-agi/Awesome-AIGC-Tutorials/stargazers)
479-
![last commit](https://img.shields.io/github/last-commit/luban-agi/Awesome-AIGC-Tutorials?color=green)
478+
[![GitHub Repo stars](https://img.shields.io/github/stars/luban-agi/Awesome-AIGC-Tutorials?style=social)](https://github.com/luban-agi/Awesome-AIGC-Tutorials/stargazers)
479+
![last commit](https://img.shields.io/github/last-commit/luban-agi/Awesome-AIGC-Tutorials?color=green)
480480
- Awesome AIGC Tutorials 包含一系列精选的教程和资源,涵盖大型语言模型、AI 绘画和相关领域。探索适合初学者和高级人工智能爱好者的深入见解和知识。
481481

482482
[![Star History Chart](https://api.star-history.com/svg?repos=eosphoros-ai/Awesome-Text2SQL&type=Date)](https://star-history.com/#eosphoros-ai/Awesome-Text2SQL)

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.