Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Collection of methods for numerical analysis and scientific computing, including numerical root-finders, numerical integration, linear algebra, and data visualization. Created for APPM4600 at CU Boulder.

Notifications You must be signed in to change notification settings

dreamchef/numerical-analysis-methods

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

86 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scientific Computing and Numerical Analysis Methods

License: MIT GitHub last commit

Collection of methods for numerical analysis and scientific computing, including numerical root-finders, numerical integration, linear algebra, and data visualization.

Linear Algebra

Dot Product

from linearAlgebra import *

n = 2
y = [1,0]
w = [0,1]

dp = dotProduct(y,w,n)
print('the dot product is : ', dp)

Output:

the dot product is :  0.0

Matrix-Vector Multiplication

from linearAlgebra import *

n = 2
mat = [[1,0],[0,1]]
vec = [0,1]

prod = matVecMult(mat,vec,n)
print('the product is : ', prod)

Output:

the product is :  [0.0, 1.0]

Rooting-Finding: Numerical Solvers

Contained in solvers.py

Fixed Point Iteration

from solvers import *
from visualization import *

f = lambda x: x**2

vec = fixedptVec(f, 0.5, 0.001, 100) # function, start point, tolerance, max iterations

printFloatVec(vec,spacing=2) # improved list print function (see below)

Output:

--------------------
f(x) = lambda x: x**2, 

Fixed point iteration:
0.25           0.0625         0.00391        1.53e-05       2.33e-10     

Additional solvers include:

  • Bisection
  • Newton's Method
  • Hybrid Bisection -> Newton solver (in progress)

Visualization Methods

Print Vector

from solvers import *
from visualization import *

f_vec = [
    lambda x: x**2,
    lambda x: x**2 - x**4
]

for f in f_vec: # loop through functions and compute roots

    print('-'*20)
    print(lambdaToString(f),'\n')

    print("Fixed point iteration:")
    vec = fixedptVec(f, 0.5, 0.001, 100)

	printFloatVec(vec,precision=3,spacing=2,newLine=True)

Output:

--------------------
f(x) = lambda x: x**2, 

Fixed point iteration:
0.25           0.0625         0.00391        1.53e-05       2.33e-10     

--------------------
f(x) = lambda x: x**2 - x**4 

Fixed point iteration:
0.188          0.0339         0.00115        1.32e-06       1.74e-12     

Created for work in APPM4600 at University of Colorado Boulder.

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
Morty Proxy This is a proxified and sanitized view of the page, visit original site.