A nicer numpy

Dima Kogan

March 13, 2020



What is this about?

Two libraries to make working in numpy nicer.
» These are public tools, available for some years
» Installable from Debian and related distros.
» Python2 and Python3 both supported

numpysane (https://github.com/dkogan/numpysane)

» Provides some routines to improve core functionality

» These are new functions, so there’re no compatibility concerns

gnuplotlib (https://github.com/dkogan/gnuplotlib)

» Plotting
» Does a similar thing as matplotlib but (I claim) better


https://github.com/dkogan/numpysane
https://github.com/dkogan/gnuplotlib

What's wrong with numpy?

» Some core functionality is mysterious and unintuitive

» Things work as expected only with 2-dimensional arrays, no
more and no less

Areas addressed by numpysane:
» Nicer array manipulation
» Nicer basic linear algebra routines
> Better broadcasting support
Mostly stolen from the PDL project



Matrix concatenation

Basic example: stick two identical 2D arrays together to extend
each row

» The docs say to use hstack()
Let's try it:

>>> import numpy as np
>>> arr32 = np.arange(3*2) .reshape(3,2)
>>> print(arr32)
([0 1]
[2 3]
[4 5]1]

>>> print (arr32.shape)
(3, 2)



Matrix concatenation

What do we expect hstack(arr32,arr32) to do?

[[010 1]
[2 3 2 3]
[4 5 4 5]]

or

[fo 1]
[2 3]
(4 5]
[0 1]
[2 3]
[4 511

?



Matrix concatenation

This was a trick question. Here's what it does:

>>> np.hstack(arr32,arr32)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: hstack() takes 1 positional argument
. but 2 were given

Apparently hstack() wants an iterable of the arguments, instead
of the arguments themselves



Matrix concatenation

Fine. Here's what it does if you feed it what it wants:

>>> print(np.hstack((arr32,arr32)))
[[010 1]

[2 32 3]

(4 5 4 5]]

That makes sense! Looks "horizontal".



Matrix concatenation

What if | don't feed it strictly 2D matrices?

>>> arrl132 = np.arange(3#2) .reshape(1,3,2)
>>> print(arr132)
Lo 1]

[2 3]

[4 5111

>>> print(arr132.shape)
(1, 3, 2)



Matrix concatenation

Same question as before: what do we expect
hstack((arr132,arr132)) to do?

[[[010 1]
[2 3 2 3]
[4 5 4 5]]1]

or

[C[o 1]
[2 3]
(4 5]
[0 1]
[2 3]
[4 5111

or something else?



Matrix concatenation

Here's what it does:

>>> print(np.hstack((arri32,arr132)))
(L0 1]

[2 3]

[4 5]

[0 1]

[2 3]

[4 511]

>>> np.hstack((arr132,arr132)) .shape
(1, 6, 2)

Whoa. That is not horizontal at all! | would have expected a result
with shape (1,3,4)



Matrix concatenation

What if | give it 1-dimensional arrays?

>>> arr3 = np.arange(3)

>>> arrl3 = np.arange(3).reshape(1,3)
>>> print(arr3)

[0 1 2]

>>> arr3.shape
(3,)

>>> print(arril3)
[[0 1 2]]

>>> arrl3.shape
(1, 3)



Matrix concatenation

>>> np.hstack((arr3,arr3)) .shape
(6,)

>>> np.hstack((arri3,arr13)) .shape
(1, 6)

>>> np.hstack((arri3,arr3)) .shape
ValueError: all the input arrays must have ...
. same number of dimensions

» Do the stacking functions want the dimension counts to match
up, or something?

Well, no:

>>> np.vstack((arri3,arr3))
[[0 1 2]
[0 1 2]]



Matrix concatenation

So what's wrong?

» numpy is inconsistent about which is the most significant
dimension in an array

There's an arbitrary design choice that must be made: if | stack N
arrays of shape (A,B,C) into a new array, do | get

1. an array of shape (N,A,B,C) or
2. an array of shape (A,B,C,N)?

Most of numpy makes the first choice, but some of it
(concatenation functions most notably) makes the second choice



Dimensionality example

Example:
» Let's say | have a 1-dimensional array containing simultaneous
temperature measurements at different locations:

>>> print(T1)
[ t_where0O t_wherel t_where2 ... ]

>>> print (T1.shape)
(Nlocations,)

We have one dimension, so the locations are indexed by axis = 0
and axis = -1. These are the same axis.



Dimensionality example

Now, let's say | measured all the temperatures multiple times
throughout the day, and | record the measurements into a joint
array T2.

| have a choice:

>>> print(T2.shape)
(Ntimes,Nlocations)

or

>>> print(T2.shape)
(Nlocations,Ntimes)

?



Dimensionality example

When | extend T1 into T2 | want consistent printing:

The dimensions printed horizontally and vertically should not
change

l.e. | want this:

>>> print(T2)
[[ t_whenOwhereO t_whenOwherel t_whenOwhere2 ...
[ t_whenlwhere0 t_whenlwherel t_whenlwhere2 ...

..

>>> print(T2.shape)
(Ntimes, Nlocations)

This way each horizontal row describes one point in time and
multiple locations, just like when printing T1



Dimensionality example

When | extend T1 into T2 | want consistent indexing:
The axis index corresponding to locations should not change

» For T1, locations are in axis = 0 and axis = -1 (same axis)
» For T2, locations are in axis = 1 and axis = -1 (same axis)

So counting from the back gives me consistency, and | want to
always use axis = -1
Thus | want

» The first concatenation option: stacking N arrays of shape
(A,B,C) produces an array of shape (N,A,B,C)

> All axes to be indexed from the end. Always.



Dimensionality example

If we really wanted to index the axes from the front while remaining
self-consistent, numpy could do what PDL does:

» the horizontally-printed dimension is the first dimension

> N arrays of shape (4,B,C) produce an array of shape

(A’B!C’N)

But then a core convention of linear algebra would be violated: a
matrix of N rows and M columns would have shape (M,N). Can’t
please everybody.



Matrix concatenation: conclusion

So why are hstack() and friends weird?

» Because hstack() tries to concatenate along axis = 1, while
it should use axis = -1

» This works for 2D arrays (and 1D arrays because of
special-case logic in hstack()), but not for others

Many other core functions in numpy have this issue, and routines in
numpysane do this in a consistent and predictable way.



Matrix concatenation with numpysane

There are two functions, both stolen from the PDL project.
» glue() concatenates any N arrays along the given axis
» cat() concatenates N arrays along a new outer dimension

These both add leading length-1 dimensions to the input as needed:
"'something" is logically equivalent to "1 of something". This is one
of the broadcasting rules I'll get to in a bit



Matrix concatenation with numpysane

nps

>>>

>>>
(3,

>>>
(6,

>>>
(1,

>>>
(1,

>>>
(2,

.glue () works as expected:

import numpysane as nps

nps.glue(arr32, arr32,
4)

nps.glue(arr32, arr32,
2)

nps.glue(arr132,arri32,
3, 4)

nps.glue(arrl3, arr3,
6)

nps.glue(arri3, arr3,
3)

axis=-1).
axis=-2).
axis=-1).
axis=-1).
axis=-2).

shape

shape

shape

shape

shape



Matrix concatenation with numpysane

nps.cat () works as expected too. It always adds a new leading
dimension

>>> nps.cat(arr32,arr32) .shape
(2, 3, 2)

>>> nps.cat(arr132,arr32) .shape
(2, 1, 3, 2)



Matrix multiplication

The funny business extends to other core areas of numpy. For
instance multiplying matrices is non-trivial

» Up until numpy 1.10.0 (2015-2016) np.dot () was the
function for that, and it is surprising in all sorts of ways (which
should be expected since a "dot product" is not the same
thing as "matrix multiplication")

» In 1.10.0 we got np.matmul, which is much better, but even
then it has strange corners. Trying to compute an outer
product:

>>> a
>>> b

np.arange(5) .reshape(5,1)
np.arange (3)

>>> np.matmul(a,b)

ValueError: matmul: Input operand 1 has a mismatch in
its core dimension O, with gufunc signature
(n?,k), (k,m?)->(n?,m?) (size 3 is different from 1)



Matrix multiplication with numpysane

numpysane provides its own matmult () routine that does what one
expects:

>>> nps.matmult(a,b).shape

(5, 3)

There're many more functions in numpysane in this area.
Everything's documented, and I'd like to move on to. ..



Broadcasting

What is broadcasting?
» Broadcasting is a generic way to vectorize functions

» A broadcasting-aware function has a prototype: it knows the
dimensionality of its inputs and of its outputs

» When calling a broadcasting-aware function, any extra
dimensions in the input are automatically used for vectorization



Broadcasting: an example

This is best described with an example: a broadcasting-aware inner
product. An inner product (also known as a dot product) is a
function that

> takes in two identically-sized 1-dimensional arrays
» outputs a scalar
inner( [ 1 23 4], [1234] )— 30



Broadcasting: an example

If one calls a broadcasting-aware inner product (such as
nps.inner()) with two arrays of shape (2,3,4) as input, it would

» compute 6 inner products of length-4 each

» report the output in an array of shape (2,3)



Broadcasting: an example
Let

>>> a234 = np.arange(2+*3+*4) .reshape(2,3,4)

>>> print(a234)

(o 1 2 3]
[4 5 6 7]
[ 8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23111

>>> a4 = np.arange(4)

>>> print(a4)
(012 3]



Broadcasting: an example

So we can give it two (2,3,4) arrays, and get inner products of
each corresponding row:

>>> print(nps.inner(a234,a234))
[[ 14 126 366]
[ 734 1230 1854]]

The values in the output are

[[ inner([0,1,2,3], (0,1,2,31),  ..... ]
[ inner([12,13,14,15], [12,13,14,15]),  ..... 1]

and so on



Broadcasting: an example

Or we can given it one (2,3,4) array and a (4,) array to compute
the inner product of every row in the larger array with the one (4,)
array:

>>> print(nps.inner(a234,a4))
[[ 14 38 62]
[ 86 110 1341]

The values in the output are

[[ inner([0,1,2,3], [0,1,2,31),  ..... ]
[ inner([12,13,14,15], [0,1,2,3]),  ..... 1]

and so on



Broadcasting rules

1. Line up the shapes of the inputs to their trailing dimensions

2. Match the trailing dimensions with the expected shapes of the
inputs. If anything doesn’t match, throw an exception

3. The extra leading dimensions must be compatible across all the
inputs. This means that each leading dimension must either

> equal 1

» be missing (thus assumed to equal 1)

> equal to some positive integer >1, consistent across all
arguments

4. Any extra leading dimensions are used for vectorization, and
determine the shape of the output



OK, so what about broadcasting?

In stock numpy, broadcasting is documented, but
> it is sparse and incomplete
> little end-user awareness that it exists

numpysane provides routines to add broadcasting awareness
> to any python function (via a decorator)

» to any C function (via generated C code that produces an
extension module)



Broadcasting: an example

Let's add broadcasting-awareness to an existing inner product
function

import numpysane as nps
@nps.broadcast_define( ((’n’,), (Cn’,)), O )
def inner(a,b):

> We had a function inner(a,b) that computes one inner
product. It knows nothing about vectorization

» Then we applied the nps.broadcast_define() decorator,
and we get dimensionality checking and vectorization logic



Plotting: gnuplotlib

Let's switch gears, and talk about plotting.

» As with the numpy core, there's a dominant choice here:
matplotlib

» I'm not aware of any major issues: if it's not pissing you off

right now, there probably isn't a lot of reason to switch to my
library

However, matplotlib ...
> is python-specific
> is slow
> has a weird API



Plotting: gnuplotlib

gnuplotlib: a plotting library for numpy
» Uses gnuplot as the plotting backend, so

» The plots look and feel like gnuplot plots have for decades
> |t's fast
» Lots of features and backends available

» Has a reasonable API (I claim)
> A direct port of PDL: :Graphics: :Gnuplot



Plotting: gnuplotlib design choices

One plot () function does everything

» Can still build up the plot components programmatically:
using python

gnuplotlib is a thin shim
> strings are passed to gnuplot verbatim (like in feedgnuplot)

» so we get a powerful library and a friendly learning curve



Plotting: gnuplotlib: a very brief tutorial
To plot something, just call plot:

import numpy as np

import numpysane as nps

import gnuplotlib as gp

th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot(np.sin(th))

1

0.8 |-

0.6 -

0.4 -

0.2

0
0.2 |
-0.4 -
206 |

-0.8 -

-1

I I I
0 10 20 30 70 80



Plotting: gnuplotlib: a very brief tutorial

import numpy as np

import numpysane as nps

import gnuplotlib as gp

th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot(np.sin(th))

> We're plotting in 2D, so default is tuplesize=2 arrays

» We gave it just 1 array, so integers 0,1,2,... were used for the
X



Plotting: gnuplotlib: a very brief tutorial

» \We can pass in 2 arrays to make an x-y plot:

th = np.linspace(-np.pi, np.pi, 100)
gp.plot(np.cos(th), np.sin(th), square = True)

1 L B NP L s =
- ==
s +

N

0t
-0.2
-0.4 |
.0.6 F

-0.8

A
[ Ty |

-1 L
-1 -08-06-04-02 0 02 04 06 08 1




Plotting: gnuplotlib: a very brief tutorial

th = np.linspace(-np.pi, np.pi, 100)
gp.plot(np.cos(th), np.sin(th), square = True)

> We passed in two arrays

> We also passed in square = True. This is a plot option to
autoscale the x and y axes evenly. Otherwise the circle will
looks like an ellipse



Plotting: gnuplotlib: a very brief tutorial
» It's possible to have more values per point. For instance:
th = np.linspace(-np.pi, np.pi, 100)
gp.plot(np.cos(th), np.sin(th),
# The angle (in degrees) is shown as the color
th * 180./np.pi,
tuplesize = 3,

_with = ’linespoints palette’,
square = True)
1 Lo S e = 200
08 \ 150
0.6 oo
A 100
0.4 - Al
p! 50
0.2 | ’§
0 |- E! 0
0.2 22 50
-0.4 | ha
/ 100
06| 1
08 ‘ - | & -150
1 e e

I I
-1 -08-06-04-02 0 02 04 06 08 1



Plotting: gnuplotlib: a very brief tutorial

th = np.linspace(-np.pi, np.pi, 100)
gp.plot(np.cos(th), np.sin(th),
# The angle (in degrees) is shown as the color
th * 180./np.pi,
tuplesize = 3,
_with ’linespoints palette’,
square True)

» The style linespoints palette is given to gnuplot directly.
gnuplotlib doesn’t know what that means

» tuplesize=3 tells gnuplotlib that there are 3 values per
point. Because of palette, these will be interpreted as
x,y,color

» The gnuplot documentation talks in detail about what kind
of input each style expects



Plotting: gnuplotlib: a very brief tutorial

An explicit invocation of plot () looks like this:
plot( curve, curve, ..., plot_options )
where each curve is a tuple:

curve = (array, array, ..., curve_options)

» plot options apply to the whole plot, and are given as keyword
args to plot ()

» curve options apply to each separate curve (dataset); given in
a dict() in the end of each curve tuple. Or defaults given in
the plot () kwargs

> If we have one dataset, we can inline the tuples, like we did
above



Plotting: gnuplotlib: a very brief tutorial

th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot( ( th, np.sin(th), ),
( th, np.cos(th), ),
( th, th, dict(_with = ’points ps 1’) ),
_with = ’lines’,
xlabel = "Angle (rad)",

title = "2 with lines and 1 with points")
2 with lines and 1 with points

8
6
ol
b
o G T ~ _—
2l
al
6
- ‘ ‘ ‘ ‘ ‘ ‘

-8 -6 -4 -2 0 2 4 6 8

Angle (rad)



Plotting: gnuplotlib: a very brief tutorial

th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot( ( th, np.sin(th), ),
( th, np.cos(th), ),
( th, th, dict(_with = ’points ps 1%) ),
_with = ’lines’,
xlabel = "Angle (rad)",
title = "2 with lines and 1 with points")

We passed in 3 tuples, one for each dataset

We passed in the x1label plot option to label the x axis
We passed in the title plot option to title the plot
We passed in the default with curve option: lines

2/3 datasets don't set their own with, so they use lines

vVvvyVvVvyy

1/3 plots with points ps 1 instead. gnuplotlib doesn’t
know what that is, but gnuplot knows that ps is a synonym
for pointsize



gp.plot( th,

» Broadcasting is fully supported:
th =

nps.cat(np.sin(th),

Plotting: gnuplotlib: a very brief tutorial

np.linspace(-2.*np.pi, 2.*np.pi, 100)

np.cos(th)),
legend = np.array( ("sin", "cos"), ) )
1
= ; o ; —
oal / ™ SN P
1 \ %
06 AS \ 4 \ X B
/X \ / / \ X
0.4 A \ fl [k A\ 7
02 L /‘ \ \ 4 X *\ i
ot { A *\ " ¥ 7 8
k \ \ &
0.2 \ ] 7 \ \ N B
\ A # A \ o
-0.4 - AUYA / X \* d -
0.6 X \x %* N/ / J
>l K \\// k xx\\ // ]
-8 -6 4 -2 0 2 4 6




Plotting: gnuplotlib: a very brief tutorial

th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot( th,
nps.cat(np.sin(th),
np.cos(th)),
legend = np.array( ("sin", "cos"), ) )

> | plotted two datasets, but didn’t use tuples
» Using default tuplesize=2, and gave it two arrays:
» First array has the expected shape of (100,)
» Second array has the shape (2,100)
» This thus broadcasts: | get two plots: sin(th) vs th and
cos(th) vs th
» curve options broadcast too: | have it two different 1legend
options, and gnuplotlib knows to use each one for the two
datasets



Plotting: gnuplotlib: a very brief tutorial

Let's make this plot:

o - N w s w
T T T T

,-0""" """" . ."
.ooﬂ"uo!‘

s te. °® '}
,o..... ::'{

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8



Plotting: gnuplotlib: a very brief tutorial

th = np.linspace(0, 6*np.pi, 200)
z = np.linspace(0, 5, 200)
size = 0.5 + np.abs(up.cos(th))

color = np.sin(2*th)

gp.plot3d( np.cos(th) * nps.transpose(np.array((1,-1))),
np.sin(th) * nps.transpose(np.array((1,-1))),
Z,
size,
color,
tuplesize = 5,
_with = ’points ps variable pt 7 palette’,
squarexy = True)



Plotting: gnuplotlib

That's it for the syntax. Lots of examples in the guide:

> https://github.com/dkogan/gnuplotlib/blob/master/
guide/guide.org

The API docs are on the main page:
> https://github.com/dkogan/gnuplotlib


https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org
https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org
https://github.com/dkogan/gnuplotlib

Thanks for listening!

The documentation and sources and links to this talk:
> https://github.com/dkogan/numpysane
> https://github.com/dkogan/gnuplotlib

Or you can

apt install python3-numpysane python3-gnuplotlib


https://github.com/dkogan/numpysane
https://github.com/dkogan/gnuplotlib

