Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 4e70451

Browse filesBrowse files
Update LongestIncreasingSubsequence.java
1 parent 8f43cce commit 4e70451
Copy full SHA for 4e70451

File tree

Expand file treeCollapse file tree

1 file changed

+41
-3
lines changed
Open diff view settings
Filter options
Expand file treeCollapse file tree

1 file changed

+41
-3
lines changed
Open diff view settings
Collapse file

‎DynamicProgramming/LongestIncreasingSubsequence.java‎

Copy file name to clipboardExpand all lines: DynamicProgramming/LongestIncreasingSubsequence.java
+41-3Lines changed: 41 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,13 +9,15 @@ public static void main(String[] args) {
99
Scanner sc = new Scanner(System.in);
1010
int n = sc.nextInt();
1111

12-
int ar[] = new int[n];
12+
int arr[] = new int[n];
1313
for (int i = 0; i < n; i++) {
14-
ar[i] = sc.nextInt();
14+
arr[i] = sc.nextInt();
1515
}
1616

17-
System.out.println(LIS(ar));
17+
System.out.println(LIS(arr));
18+
System.out.println(findLISLen(arr));
1819
sc.close();
20+
1921
}
2022

2123
private static int upperBound(int[] ar, int l, int r, int key) {
@@ -56,4 +58,40 @@ private static int LIS(int[] array) {
5658

5759
return length;
5860
}
61+
62+
/** @author Alon Firestein (https://github.com/alonfirestein) */
63+
64+
// A function for finding the length of the LIS algorithm in O(nlogn) complexity.
65+
public static int findLISLen(int a[]) {
66+
int size = a.length;
67+
int arr[] = new int[size];
68+
arr[0] = a[0];
69+
int lis = 1;
70+
for (int i = 1; i < size; i++) {
71+
int index = binarySearchBetween(arr, lis, a[i]);
72+
arr[index] = a[i];
73+
if (index > lis)
74+
lis++;
75+
}
76+
return lis;
77+
}
78+
// O(logn)
79+
private static int binarySearchBetween(int[] t, int end, int key) {
80+
int left = 0;
81+
int right = end;
82+
if (key < t[0])
83+
return 0;
84+
if (key > t[end])
85+
return end + 1;
86+
while (left < right - 1) {
87+
int middle = (left + right) / 2;
88+
if (t[middle] < key)
89+
left = middle;
90+
else
91+
right = middle;
92+
}
93+
return right;
94+
}
95+
96+
5997
}

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.