Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit ba0702c

Browse filesBrowse files
committed
Reduce XML validation errors caused by inappropriate usage of ( and )
1 parent e338921 commit ba0702c
Copy full SHA for ba0702c

File tree

1 file changed

+22
-22
lines changed
Filter options

1 file changed

+22
-22
lines changed

‎xml/issue4212.xml

Copy file name to clipboardExpand all lines: xml/issue4212.xml
+22-22Lines changed: 22 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -26,9 +26,9 @@ This allows us to state the result precisely, and makes it clear how each round
2626
values of the previous rounds.
2727
<p/>
2828
It seems convenient to change the round counter <math><mi>q</mi></math> to be 1-based (and
29-
<math><msup><mi>X</mi><mrow>(<mn>0</mn>)</mrow></msup></math>
29+
<math><msup><mi>X</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msup></math>
3030
is an alias for the initial value, <math><mi>X</mi></math>), so that the final result is
31-
<math><msup><mi>X</mi><mrow>(<mi>r</mi>)</mrow></msup></math>.
31+
<math><msup><mi>X</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup></math>.
3232
</p>
3333
</discussion>
3434

@@ -60,32 +60,32 @@ the <math><mi>i</mi></math>th element of <math><mi>Y</mi></math> after applying
6060
and the length-<math><mi>n</mi></math> sequence <math><mi>X</mi></math> into a length-<math><mi>n</mi></math> output
6161
sequence <math><mi>Y</mi></math>. Philox applies an <math><mi>r</mi></math>-round substitution-permutation network to
6262
the values in <math><mi>X</mi></math>. <del>A single round of the generation algorithm performs the following steps:</del>
63-
<ins>That is, there are intermediate values <math><msup><mi>X</mi><mrow>(<mn>0</mn>)</mrow></msup></math>,
64-
<math><msup><mi>X</mi><mrow>(<mn>1</mn>)</mrow></msup></math>, &hellip;,
65-
<math><msup><mi>X</mi><mrow>(<mi>r</mi>)</mrow></msup></math>, where
66-
<math><msup><mi>X</mi><mrow>(<mn>0</mn>)</mrow></msup><mo>:=</mo><mi>X</mi></math>, and for each round
67-
<math><mi>q</mi></math> (with <math><mi>q</mi><mo>=</mo><mn>1</mn>, &hellip;, <mi>r</mi></math>),
68-
<math><msup><mi>X</mi><mrow>(<mi>q</mi>)</mrow></msup></math> is computed from
69-
<math><msup><mi>X</mi><mrow>(<mi>q</mi><mo>-</mo><mn>1</mn>)</mrow></msup></math> as follows. The output sequence
70-
is <math><msup><mi>X</mi><mrow>(<mi>r</mi>)</mrow></msup></math>.</ins>
63+
<ins>That is, there are intermediate values <math><msup><mi>X</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msup></math>,
64+
<math><msup><mi>X</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math>, &hellip;,
65+
<math><msup><mi>X</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup></math>, where
66+
<math><msup><mi>X</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msup><mo>:=</mo><mi>X</mi></math>, and for each round
67+
<math><mi>q</mi></math> (with <math><mi>q</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>&hellip;</mo><mo>,</mo><mi>r</mi></math>),
68+
<math><msup><mi>X</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msup></math> is computed from
69+
<math><msup><mi>X</mi><mrow><mo>(</mo><mi>q</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></msup></math> as follows. The output sequence
70+
is <math><msup><mi>X</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></msup></math>.</ins>
7171
</p>
7272
<ol style="list-style-type: none">
7373
<li><p>(4.1) &mdash; <del>The output sequence <math><mi>X</mi><mi>'</mi></math> of the previous round (<math><mi>X</mi></math>
7474
in case of the first round) is permuted to obtain the intermediate state <math><mi>V</mi></math>:</del></p>
7575
<blockquote><pre>
76-
<del><math><msub><mi>V</mi><mrow><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>X</mi>'<mrow><msub><mi>f</mi><mrow><mi>n</mi></mrow></msub>(<mi>j</mi>)</mrow></msub></math></del>
76+
<del><math><msub><mi>V</mi><mrow><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>X</mi><mi>'</mi><mrow><msub><mi>f</mi><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>j</mi><mo>)</mo></mrow></msub></math></del>
7777
</pre></blockquote>
7878
<p>
79-
<ins>An intermediate state <math><msup><mi>V</mi><mrow>(<mi>q</mi>)</mrow></msup></math> is obtained
79+
<ins>An intermediate state <math><msup><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msup></math> is obtained
8080
by permuting the previous output,
81-
<math><msubsup><mi>V</mi><mi>j</mi><mrow>(<mi>q</mi>)</mrow></msubsup><mo>:=</mo><msubsup><mi>X</mi><mrow><msub><mi>f</mi><mrow><mi>n</mi></mrow></msub>(<mi>j</mi>)</mrow><mrow>(<mi>q</mi><mo>-</mo><mn>1</mn>)</mrow></msubsup></math>,</ins>
82-
where <math><mi>j</mi><mo>=</mo><mn>0</mn>, &hellip; , <mi>n</mi><mo>−</mo><mn>1</mn></math> and
83-
<math><msub><mi>f</mi><mrow><mi>n</mi></mrow></msub>(<mi>j</mi>)</math> is defined in Table 124.
81+
<math><msubsup><mi>V</mi><mi>j</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msubsup><mo>:=</mo><msubsup><mi>X</mi><mrow><msub><mi>f</mi><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>j</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>q</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow></msubsup></math>,</ins>
82+
where <math><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&hellip;</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math> and
83+
<math><msub><mi>f</mi><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>j</mi>)</math> is defined in Table 124.
8484
</p>
8585
</li>
8686
<li><p>(4.2) &mdash; <del>The following computations are applied to the elements of the <math><mi>V</mi></math> sequence:</del>
87-
<ins>The next output <math><msup><mi>X</mi><mrow>(<mi>q</mi>)</mrow></msup></math> is computed from the elements of the
88-
<math><msup><mi>V</mi><mrow>(<mi>q</mi>)</mrow></msup></math> as follows. For <math><mi>k</mi><mo>=</mo><mn>0</mn>,&hellip;,<mi>n</mi><mo>/</mo><mn>2</mn><mo>-</mo><mn>1</mn>,</math></ins></p>
87+
<ins>The next output <math><msup><mi>X</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msup></math> is computed from the elements of the
88+
<math><msup><mi>V</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msup></math> as follows. For <math><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&hellip;</mo><mo>,</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>-</mo><mn>1</mn><mo>,</mo></math></ins></p>
8989
<ol style="list-style-type: none">
9090
<li><p><ins>(4.2.?) &mdash;</ins><math><msub><mi>X</mi><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>0</mn></mrow></msub></math> = mulhi(<math><msub><mi>V</mi><mrow><mn>2</mn><mi>k</mi></mrow></msub></math>,<math><msub><mi>M</mi><mi>k</mi></msub></math>,<i>w</i>) xor <math><msubsup><mi style="font-style: italic">key</mi><mi>k</mi><mi>q</mi></msubsup></math> xor <math><msub><mi>V</mi><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math><ins>, and</ins></p></li>
9191
<li><p><ins>(4.2.?) &mdash;</ins><math><msub><mi>X</mi><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math> = mullo(<math><msub><mi>V</mi><mrow><mn>2</mn><mi>k</mi></mrow></msub></math>,<math><msub><mi>M</mi><mi>k</mi></msub></math>,<i>w</i>)<ins>,</ins></p></li>
@@ -99,16 +99,16 @@ where:
9999
<li><p>(4.2.2) &mdash; mulhi(<math><mi>a</mi>,<mi>b</mi>,<mi>w</mi></math>) is the high half of the modular multiplication of
100100
<math><mi>a</mi></math> and <math><mi>b</mi></math>: <math>(&#x230A;(<mi>a</mi><mo>&#8901;</mo><mi>b</mi>)<mo>/</mo><msup><mn>2</mn><mi>w</mi></msup>&#x230B;)</math>,</p></li>
101101
<li><p>(4.2.3) &mdash;
102-
<del><math><mi>k</mi><mo>=</mo><mn>0</mn>, &hellip; , <mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>1</mn></math> is the index in the sequences,</del>
103-
<ins><math><msubsup><mi>K</mi><mi>k</mi><mrow>(<mi>q</mi>)</mrow></msubsup></math> is the
102+
<del><math><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&hellip;</mo><mo>,</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>−</mo><mn>1</mn></math> is the index in the sequences,</del>
103+
<ins><math><msubsup><mi>K</mi><mi>k</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msubsup></math> is the
104104
<math><msup><mi>k</mi><mtext>th</mtext></msup></math> round key for round <math><mi>q</mi></math>,
105-
<math><msubsup><mi>K</mi><mi>k</mi><mrow>(<mi>q</mi>)</mrow></msubsup><mo>:=</mo>(<msub><mi>K</mi><mi>k</mi></msub><mo>+</mo>(<mi>q</mi><mo>-</mo><mn>1</mn>)<mo>&#8901;</mo><msub><mi>C</mi><mi>k</mi></msub>)<mo>mod</mo><msup><mn>2</mn><mi>w</mi></msup></math>,</ins></p></li>
106-
<li><p>(4.2.4) &mdash; <del><math><mi>q</mi><mo>=</mo><mn>0</mn>, &hellip; , <mi>r</mi><mo>−</mo><mn>1</mn></math> is the index of the round,</del>
105+
<math><msubsup><mi>K</mi><mi>k</mi><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></msubsup><mo>:=</mo><mo>(</mo><msub><mi>K</mi><mi>k</mi></msub><mo>+</mo><mo>(</mo><mi>q</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>&#8901;</mo><msub><mi>C</mi><mi>k</mi></msub><mo>)</mo><mo>mod</mo><msup><mn>2</mn><mi>w</mi></msup></math>,</ins></p></li>
106+
<li><p>(4.2.4) &mdash; <del><math><mi>q</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&hellip;</mo><mo>,</mo><mi>r</mi><mo>−</mo><mn>1</mn></math> is the index of the round,</del>
107107
<ins><math><msub><mi>K</mi><mi>k</mi></msub></math> is the <math><msup><mi>k</mi><mtext>th</mtext></msup></math> element of the key sequence
108108
<math><mi>K</mi></math>,</ins></p></li>
109109
<li><p><del>(4.2.5) &mdash; <math><msubsup><mi style="font-style: italic">key</mi><mi>k</mi><mi>q</mi></msubsup></math> is the
110110
<math><msup><mi>k</mi><mtext>th</mtext></msup></math> round key for round <math><mi>q</mi></math>,
111-
<math><msubsup><mi style="font-style: italic">key</mi><mi>k</mi><mi>q</mi></msubsup><mo>:=</mo>(<msub><mi>K</mi><mi>k</mi></msub><mo>+</mo><mi>q</mi><mo>&#8901;</mo><msub><mi>C</mi><mi>k</mi></msub>)<mo>mod</mo><msup><mn>2</mn><mi>w</mi></msup></math>,</del></p></li>
111+
<math><msubsup><mi style="font-style: italic">key</mi><mi>k</mi><mi>q</mi></msubsup><mo>:=</mo><mo>(</mo><msub><mi>K</mi><mi>k</mi></msub><mo>+</mo><mi>q</mi><mo>&#8901;</mo><msub><mi>C</mi><mi>k</mi></msub><mo>)</mo><mo>mod</mo><msup><mn>2</mn><mi>w</mi></msup></math>,</del></p></li>
112112
<li><p><del>(4.2.6) &mdash; <math><msub><mi>K</mi><mi>k</mi></msub></math> are the elements of the key sequence <math><mi>K</mi></math>,</del></p></li>
113113
<li><p>(4.2.7) &mdash; <math><msub><mi>M</mi><mi>k</mi></msub></math> is <tt>multipliers[<math><mi>k</mi></math>]</tt>, and</p></li>
114114
<li><p>(4.2.8) &mdash; <math><msub><mi>C</mi><mi>k</mi></msub></math> is <tt>round_consts[<math><mi>k</mi></math>]</tt>.</p></li>

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.