Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Fix sentence structure in fft.md #1408

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 6, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion 2 src/algebra/fft.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ It is easy to see that

$$A(x) = A_0(x^2) + x A_1(x^2).$$

The polynomials $A_0$ and $A_1$ are only half as much coefficients as the polynomial $A$.
The polynomials $A_0$ and $A_1$ have only half as many coefficients as the polynomial $A$.
If we can compute the $\text{DFT}(A)$ in linear time using $\text{DFT}(A_0)$ and $\text{DFT}(A_1)$, then we get the recurrence $T_{\text{DFT}}(n) = 2 T_{\text{DFT}}\left(\frac{n}{2}\right) + O(n)$ for the time complexity, which results in $T_{\text{DFT}}(n) = O(n \log n)$ by the **master theorem**.

Let's learn how we can accomplish that.
Expand Down
Loading
Morty Proxy This is a proxified and sanitized view of the page, visit original site.