Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

chenyaofo/statistical-learning-method-numpy-impl

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 

Repository files navigation

统计学习方法 (李航) Numpy实现 / Numpy Implementaton for Statistical Learning Method (Hang Li)

本仓库旨在提供统计学习方法一书中算法的numpy实现。诚然在GitHub上已经有了许多类似的实现,但是本仓库有着以下优点: This repo aims to provide numpy implementation for the algorithms in the book Statistical Learning Method. I notice there are lots of implementtions in the GitHub. Here, I highlight the advantage of my implementations:

  • 快速运行:可以直接在Google Colab上直接运行,无需下载或克隆代码到本地。Directly running in Google Colab without downloading/cloning the repo to the local.
  • 高效运行:使用numpy中向量化实现替代python中的循环等操作。Implement by vectorized built-in functions in numpy instead of vanilla python operations, leading to better performance.
  • 真实数据集:使用来自libsvm中的数据集而不是生成的数据。Using more practical datasets from libsvm instead of synthetic datasets.
  • 无需提前下载数据集:数据集将以在线的方式直接加载无需额外手动下载。Loading datasets directly from the internet (libsvm website) without extra manual downloading.

这个仓库不是:This repo is not:

  • 算法详解:只关注代码实现而不是算法本身的原理。details of algorithms. It focuses on implementations instead of other details of algorithms.
  • 通用算法库:本实现仅仅用于快速理解算法,并未对算法进行封装,也未考虑实际使用中的各类情况。a general algorithm library. This implementation is only used to quickly understand the algorithm, it does not encapsulate the algorithm, and does not consider various situations in actual use.

监督学习 / Supervised Learning

  • K近邻算法 / K-nearest Neighbors Algorithm Open in Colab

  • 朴素贝叶斯法 / Naive Bayes Classifier Open in Colab TODO

  • 决策树 / Decision Tree Open in Colab TODO

  • 最大熵模型 / Maximum Entropy Model Open in Colab TODO

  • 逻辑斯蒂回归 / Logistic Regression Open in Colab TODO

  • 支持向量机 Supprt Vector Machine Open in Colab TODO

  • 提升方法 / AdaBoost Open in Colab TODO

  • EM算法 / Expectation Maximization Algorithm Open in Colab TODO

  • 隐马尔可夫模型 / Hidden Markov Model Open in Colab TODO

无监督学习 / Unsupervised Learning

  • K均值聚类 / K-means Clustering Open in Colab TODO

  • 层次聚类 / Hierachical Clustering Open in Colab TODO

  • 主成分分析 / Principal Components Analysis Open in Colab TODO

  • 潜在语义分析 / Latent Semantic Analysis Open in Colab TODO

  • 概率潜在语义分析 / Probabilistic Latent Semantic Analysis Open in Colab TODO

  • 潜在狄利克雷分配 / Latent Dirichlet Allocation Open in Colab TODO

  • PageRank算法 / PageRank Algorithm Open in Colab TODO

About

Numpy Implementaton for “Statistical Learning Method”. 《统计机器学习》的Numpy实现。

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
Morty Proxy This is a proxified and sanitized view of the page, visit original site.