File tree Expand file tree Collapse file tree 6 files changed +25
-25
lines changed Open diff view settings
Expand file tree Collapse file tree 6 files changed +25
-25
lines changed Open diff view settings
Original file line number Diff line number Diff line change 1717
1818maxlen = 256
1919epochs = 10
20- batch_size = 32
21- learning_rate = 2e-5 # bert_layers越小,学习率应该要越大
20+ batch_size = 16
21+ learning_rate = 2e-5
2222crf_lr_multiplier = 1000 # 必要时扩大CRF层的学习率
2323categories = set ()
2424
@@ -158,7 +158,7 @@ def on_epoch_end(self, epoch, logs=None):
158158 # 保存最优
159159 if f1 >= self .best_val_f1 :
160160 self .best_val_f1 = f1
161- model .save_weights ('./best_model .weights' )
161+ model .save_weights ('./best_model_cluener_crf .weights' )
162162 print (
163163 'valid: f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n ' %
164164 (f1 , precision , recall , self .best_val_f1 )
@@ -200,6 +200,6 @@ def predict_to_file(in_file, out_file):
200200
201201else :
202202
203- model .load_weights ('./best_model .weights' )
203+ model .load_weights ('./best_model_cluener_crf .weights' )
204204 NER .trans = K .eval (CRF .trans )
205205 # predict_to_file('/root/ner/cluener/test.json', 'cluener_test.json')
Original file line number Diff line number Diff line change 11#! -*- coding: utf-8 -*-
2- # 用全局归一化指针做中文命名实体识别
2+ # 用GlobalPointer做中文命名实体识别
33# 数据集 https://github.com/CLUEbenchmark/CLUENER2020
44
55import json
@@ -162,7 +162,7 @@ def on_epoch_end(self, epoch, logs=None):
162162 # 保存最优
163163 if f1 >= self .best_val_f1 :
164164 self .best_val_f1 = f1
165- model .save_weights ('./best_model .weights' )
165+ model .save_weights ('./best_model_cluener_globalpointer .weights' )
166166 print (
167167 'valid: f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n ' %
168168 (f1 , precision , recall , self .best_val_f1 )
@@ -199,10 +199,10 @@ def predict_to_file(in_file, out_file):
199199 train_generator .forfit (),
200200 steps_per_epoch = len (train_generator ),
201201 epochs = epochs ,
202- callbacks = [evaluator ],
202+ callbacks = [evaluator ]
203203 )
204204
205205else :
206206
207- model .load_weights ('./best_model .weights' )
207+ model .load_weights ('./best_model_cluener_globalpointer .weights' )
208208 # predict_to_file('/root/ner/cluener/test.json', 'cluener_test.json')
Original file line number Diff line number Diff line change 1717
1818maxlen = 256
1919epochs = 10
20- batch_size = 32
21- learning_rate = 2e-5 # bert_layers越小,学习率应该要越大
20+ batch_size = 16
21+ learning_rate = 2e-5
2222crf_lr_multiplier = 1000 # 必要时扩大CRF层的学习率
2323categories = set ()
2424
@@ -155,7 +155,7 @@ def on_epoch_end(self, epoch, logs=None):
155155 # 保存最优
156156 if f1 >= self .best_val_f1 :
157157 self .best_val_f1 = f1
158- model .save_weights ('./best_model .weights' )
158+ model .save_weights ('./best_model_cmeee_crf .weights' )
159159 print (
160160 'valid: f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n ' %
161161 (f1 , precision , recall , self .best_val_f1 )
@@ -193,11 +193,11 @@ def predict_to_file(in_file, out_file):
193193 train_generator .forfit (),
194194 steps_per_epoch = len (train_generator ),
195195 epochs = epochs ,
196- callbacks = [evaluator ],
196+ callbacks = [evaluator ]
197197 )
198198
199199else :
200200
201- model .load_weights ('./best_model .weights' )
201+ model .load_weights ('./best_model_cmeee_crf .weights' )
202202 NER .trans = K .eval (CRF .trans )
203203 # predict_to_file('/root/ner/CMeEE/CMeEE_test.json', 'CMeEE_test.json')
Original file line number Diff line number Diff line change 11#! -*- coding: utf-8 -*-
2- # 用全局归一化指针做中文命名实体识别
2+ # 用GlobalPointer做中文命名实体识别
33# 数据集 https://tianchi.aliyun.com/dataset/dataDetail?dataId=95414
44
55import json
@@ -159,7 +159,7 @@ def on_epoch_end(self, epoch, logs=None):
159159 # 保存最优
160160 if f1 >= self .best_val_f1 :
161161 self .best_val_f1 = f1
162- model .save_weights ('./best_model .weights' )
162+ model .save_weights ('./best_model_cmeee_globalpointer .weights' )
163163 print (
164164 'valid: f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n ' %
165165 (f1 , precision , recall , self .best_val_f1 )
@@ -197,10 +197,10 @@ def predict_to_file(in_file, out_file):
197197 train_generator .forfit (),
198198 steps_per_epoch = len (train_generator ),
199199 epochs = epochs ,
200- callbacks = [evaluator ],
200+ callbacks = [evaluator ]
201201 )
202202
203203else :
204204
205- model .load_weights ('./best_model .weights' )
205+ model .load_weights ('./best_model_cmeee_globalpointer .weights' )
206206 # predict_to_file('/root/ner/CMeEE/CMeEE_test.json', 'CMeEE_test.json')
Original file line number Diff line number Diff line change 1616
1717maxlen = 256
1818epochs = 10
19- batch_size = 32
20- learning_rate = 2e-5 # bert_layers越小,学习率应该要越大
19+ batch_size = 16
20+ learning_rate = 2e-5
2121crf_lr_multiplier = 1000 # 必要时扩大CRF层的学习率
2222categories = set ()
2323
@@ -163,7 +163,7 @@ def on_epoch_end(self, epoch, logs=None):
163163 # 保存最优
164164 if f1 >= self .best_val_f1 :
165165 self .best_val_f1 = f1
166- model .save_weights ('./best_model .weights' )
166+ model .save_weights ('./best_model_peopledaily_crf .weights' )
167167 print (
168168 'valid: f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n ' %
169169 (f1 , precision , recall , self .best_val_f1 )
@@ -189,5 +189,5 @@ def on_epoch_end(self, epoch, logs=None):
189189
190190else :
191191
192- model .load_weights ('./best_model .weights' )
192+ model .load_weights ('./best_model_peopledaily_crf .weights' )
193193 NER .trans = K .eval (CRF .trans )
Original file line number Diff line number Diff line change 11#! -*- coding: utf-8 -*-
2- # 用全局归一化指针做中文命名实体识别
2+ # 用GlobalPointer做中文命名实体识别
33# 数据集 http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz
44
55import numpy as np
@@ -167,7 +167,7 @@ def on_epoch_end(self, epoch, logs=None):
167167 # 保存最优
168168 if f1 >= self .best_val_f1 :
169169 self .best_val_f1 = f1
170- model .save_weights ('./best_model .weights' )
170+ model .save_weights ('./best_model_peopledaily_globalpointer .weights' )
171171 print (
172172 'valid: f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n ' %
173173 (f1 , precision , recall , self .best_val_f1 )
@@ -188,9 +188,9 @@ def on_epoch_end(self, epoch, logs=None):
188188 train_generator .forfit (),
189189 steps_per_epoch = len (train_generator ),
190190 epochs = epochs ,
191- callbacks = [evaluator ],
191+ callbacks = [evaluator ]
192192 )
193193
194194else :
195195
196- model .load_weights ('./best_model .weights' )
196+ model .load_weights ('./best_model_peopledaily_globalpointer .weights' )
You can’t perform that action at this time.
0 commit comments