|
| 1 | +// 依然是使用堆排序的思想 |
| 2 | +// Runtime: 240 ms, faster than 68.34% of C++ online submissions for K Closest Points to Origin. |
| 3 | +// Memory Usage: 45 MB, less than 60.94% of C++ online submissions for K Closest Points to Origin. |
| 4 | + |
| 5 | +struct cell |
| 6 | +{ |
| 7 | + cell (int x, int y, double d) : x(x), y(y), dis(d) {} |
| 8 | + |
| 9 | + int x, y; |
| 10 | + double dis; |
| 11 | +}; |
| 12 | + |
| 13 | +class Solution |
| 14 | +{ |
| 15 | +public: |
| 16 | + vector<vector<int>> kClosest(vector<vector<int>>& points, int k) |
| 17 | + { |
| 18 | + vector<vector<int>> res; |
| 19 | + |
| 20 | + vector<cell> heap; |
| 21 | + for (int i = 0; i < k; ++i) |
| 22 | + { |
| 23 | + heap.push_back(cell(points[i][0], points[i][1], getdis(points[i][0], points[i][1]))); |
| 24 | + } |
| 25 | + |
| 26 | + make_heap(heap.begin(), heap.end(), key); |
| 27 | + |
| 28 | + for (int i = k; i < points.size(); ++i) |
| 29 | + { |
| 30 | + if (heap[0].dis > getdis(points[i][0], points[i][1])) |
| 31 | + { |
| 32 | + pop_heap(heap.begin(), heap.end(), key); |
| 33 | + heap.pop_back(); |
| 34 | + |
| 35 | + heap.push_back(cell(points[i][0], points[i][1], getdis(points[i][0], points[i][1]))); |
| 36 | + push_heap(heap.begin(), heap.end(), key); |
| 37 | + } |
| 38 | + } |
| 39 | + |
| 40 | + for (auto item : heap) |
| 41 | + { |
| 42 | + vector<int> temp(2, 0); |
| 43 | + temp[0] = item.x; |
| 44 | + temp[1] = item.y; |
| 45 | + res.push_back(temp); |
| 46 | + } |
| 47 | + |
| 48 | + return res; |
| 49 | + } |
| 50 | +private: |
| 51 | + bool(*key)(const cell&, const cell&) = [](const cell& pos1, const cell& pos2){return pos1.dis < pos2.dis; }; |
| 52 | +private: |
| 53 | + double getdis(int x, int y) |
| 54 | + { |
| 55 | + return (x * x) + (y * y); |
| 56 | + } |
| 57 | +}; |
0 commit comments