Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

anurag-code/Survival-Analysis-Intuition-Implementation-in-Python

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
9 Commits
 
 
 
 
 
 

Repository files navigation

Survival Analysis: Intuition & Implementation in Python

Quick Implementation in python

There is a statistical technique which can answer business questions as follows:

  • How long will a particular customer remain with your business? In other words, after how much time this customer will churn?
  • How long will this machine last, after successfully running for a year ?
  • What is the relative retention rate of different marketing channels?
  • What is the likelihood that a patient will survive, after being diagnosed?

If you find any of the above questions (or even the questions remotely related to them) interesting then read on. The purpose of this article is to build an intuition, so that we can apply this technique in different business settings.

Link to the article

Survival Analysis

Table of Contents

1. Introduction
2. Definitions
3. Mathematical Intuition
4. Kaplan-Meier Estimate
5. Cox Proportional Hazard Model
6. End Note
7. Additional Resources

About

Quick Implementation in python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
Morty Proxy This is a proxified and sanitized view of the page, visit original site.