Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 36 additions & 17 deletions 53 tests/test_learning.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
from learning import parse_csv, weighted_mode, weighted_replicate, DataSet, \
PluralityLearner, NaiveBayesLearner, NearestNeighborLearner, \
NeuralNetLearner, PerceptronLearner, DecisionTreeLearner, \
euclidean_distance, grade_learner, err_ratio, random_weights

import pytest
import math
from utils import DataFile
from learning import (parse_csv, weighted_mode, weighted_replicate, DataSet,
PluralityLearner, NaiveBayesLearner, NearestNeighborLearner,
rms_error, manhattan_distance, mean_boolean_error, mean_error)



Expand Down Expand Up @@ -74,16 +76,43 @@ def test_naive_bayes():

def test_k_nearest_neighbors():
iris = DataSet(name="iris")

kNN = NearestNeighborLearner(iris,k=3)
assert kNN([5,3,1,0.1]) == "setosa"
assert kNN([5, 3, 1, 0.1]) == "setosa"
assert kNN([6, 5, 3, 1.5]) == "versicolor"
assert kNN([7.5, 4, 6, 2]) == "virginica"

def test_rms_error():
assert rms_error([2,2], [2,2]) == 0
assert rms_error((0,0), (0,1)) == math.sqrt(0.5)
assert rms_error((1,0), (0,1)) == 1
assert rms_error((0,0), (0,-1)) == math.sqrt(0.5)
assert rms_error((0,0.5), (0,-0.5)) == math.sqrt(0.5)

def test_manhattan_distance():
assert manhattan_distance([2,2], [2,2]) == 0
assert manhattan_distance([0,0], [0,1]) == 1
assert manhattan_distance([1,0], [0,1]) == 2
assert manhattan_distance([0,0], [0,-1]) == 1
assert manhattan_distance([0,0.5], [0,-0.5]) == 1

def test_mean_boolean_error():
assert mean_boolean_error([1,1], [0,0]) == 1
assert mean_boolean_error([0,1], [1,0]) == 1
assert mean_boolean_error([1,1], [0,1]) == 0.5
assert mean_boolean_error([0,0], [0,0]) == 0
assert mean_boolean_error([1,1], [1,1]) == 0

def test_mean_error():
assert mean_error([2,2], [2,2]) == 0
assert mean_error([0,0], [0,1]) == 0.5
assert mean_error([1,0], [0,1]) == 1
assert mean_error([0,0], [0,-1]) == 0.5
assert mean_error([0,0.5], [0,-0.5]) == 0.5


def test_decision_tree_learner():
iris = DataSet(name="iris")

dTL = DecisionTreeLearner(iris)
assert dTL([5, 3, 1, 0.1]) == "setosa"
assert dTL([6, 5, 3, 1.5]) == "versicolor"
Expand All @@ -92,36 +121,30 @@ def test_decision_tree_learner():

def test_neural_network_learner():
iris = DataSet(name="iris")

classes = ["setosa","versicolor","virginica"]
iris.classes_to_numbers(classes)

nNL = NeuralNetLearner(iris, [5], 0.15, 75)
tests = [([5, 3, 1, 0.1], 0),
([5, 3.5, 1, 0], 0),
([6, 3, 4, 1.1], 1),
([6, 2, 3.5, 1], 1),
([7.5, 4, 6, 2], 2),
([7, 3, 6, 2.5], 2)]

assert grade_learner(nNL, tests) >= 2/3
assert err_ratio(nNL, iris) < 0.25


def test_perceptron():
iris = DataSet(name="iris")
iris.classes_to_numbers()

classes_number = len(iris.values[iris.target])

perceptron = PerceptronLearner(iris)
tests = [([5, 3, 1, 0.1], 0),
([5, 3.5, 1, 0], 0),
([6, 3, 4, 1.1], 1),
([6, 2, 3.5, 1], 1),
([7.5, 4, 6, 2], 2),
([7, 3, 6, 2.5], 2)]

assert grade_learner(perceptron, tests) > 1/2
assert err_ratio(perceptron, iris) < 0.4

Expand All @@ -130,12 +153,8 @@ def test_random_weights():
min_value = -0.5
max_value = 0.5
num_weights = 10

test_weights = random_weights(min_value, max_value, num_weights)

assert len(test_weights) == num_weights

for weight in test_weights:
assert weight >= min_value and weight <= max_value



Morty Proxy This is a proxified and sanitized view of the page, visit original site.