From 09e02c531a7db399f615e094c2ee084e35d4db25 Mon Sep 17 00:00:00 2001 From: ouwx <69306954+ouwx@users.noreply.github.com> Date: Mon, 18 Mar 2024 23:01:12 +0800 Subject: [PATCH] =?UTF-8?q?=E4=BD=BF=E7=94=A8=20Colaboratory=20=E5=BB=BA?= =?UTF-8?q?=E7=AB=8B?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Colaboratory.ipynb | 1127 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1127 insertions(+) create mode 100644 Colaboratory.ipynb diff --git a/Colaboratory.ipynb b/Colaboratory.ipynb new file mode 100644 index 000000000..824622fe3 --- /dev/null +++ b/Colaboratory.ipynb @@ -0,0 +1,1127 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Wf5KrEb6vrkR" + }, + "source": [ + "
\n", + "

歡迎使用 Colab!

\n", + "
\n", + "\n", + "\n", + "
\n", + "

(新功能) 使用 Gemini API

\n", + " \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Nma_JWh-W-IF" + }, + "source": [ + "如果你已經熟悉 Colab,請觀看這部影片瞭解互動式表格、執行過的程式碼歷史記錄檢視畫面,以及指令區塊面板。\n", + "\n", + "
\n", + " \n", + " 顯示 3 項 Google Colab 酷炫功能的影片縮圖\n", + " \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zwFnJsE6vjf8" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5fCEDCU_qrC0" + }, + "source": [ + "
\n", + "

Colab 是什麼?

\n", + "
\n", + "\n", + "Colab (全名為「Colaboratory」) 可讓你在瀏覽器中編寫及執行 Python 程式碼,並具有以下優點:\n", + "- 不必進行任何設定\n", + "- 免付費使用 GPU\n", + "- 輕鬆共用\n", + "\n", + "無論你是學生數據資料學家或是 AI 研究人員,Colab 都能讓你的工作事半功倍。請觀看 Colab 的簡介影片瞭解詳情,或是直接瀏覽以下的新手入門說明!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GJBs_flRovLc" + }, + "source": [ + "
\n", + "\n", + "## 開始使用\n", + "
\n", + "\n", + "你正在閱讀的文件並非靜態網頁,而是名為 Colab 筆記本的互動式環境,可讓你撰寫和執行程式碼。\n", + "\n", + "舉例來說,以下是包含簡短 Python 指令碼的程式碼儲存格,可進行運算、將值儲存至變數中並列印運算結果:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "gJr_9dXGpJ05", + "outputId": "9f556d03-ec67-4950-a485-cfdba9ddd14d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "86400" + ] + }, + "execution_count": 0, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "seconds_in_a_day = 24 * 60 * 60\n", + "seconds_in_a_day" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2fhs6GZ4qFMx" + }, + "source": [ + "如要執行上方儲存格中的程式碼,請按一下進行選取,再按一下程式碼左側的播放鍵,或是使用鍵盤快速鍵「Command/Ctrl + Enter 鍵」。按一下儲存格即可開始編輯程式碼。\n", + "\n", + "在一個儲存格中定義的變數之後可用於其他儲存格:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "-gE-Ez1qtyIA", + "outputId": "94cb2224-0edf-457b-90b5-0ac3488d8a97" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "604800" + ] + }, + "execution_count": 0, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "seconds_in_a_week = 7 * seconds_in_a_day\n", + "seconds_in_a_week" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lSrWNr3MuFUS" + }, + "source": [ + "Colab 筆記本可讓你在單一文件中結合可執行的程式碼RTF 格式,並附帶圖片HTMLLaTeX 等其他格式的內容。你建立的 Colab 筆記本會儲存到你的 Google 雲端硬碟帳戶中。你可以輕鬆將 Colab 筆記本與同事或朋友共用,讓他們在筆記本上加上註解,或甚至進行編輯。詳情請參閱 Colab 總覽。如要建立新的 Colab 筆記本,你可以使用上方的「檔案」選單或以下連結:建立新的 Colab 筆記本。\n", + "\n", + "Colab 筆記本是由 Colab 代管的 Jupyter 筆記本。如要進一步瞭解 Jupyter 專案,請參閱 jupyter.org。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UdRyKR44dcNI" + }, + "source": [ + "
\n", + "\n", + "## 數據資料學\n", + "
\n", + "\n", + "Colab 可讓你充分利用熱門 Python 程式庫的強大功能,對資料進行分析並以視覺化方式呈現。下方的程式碼儲存格使用 numpy 來產生一些隨機性資料,並透過 matplotlib 將這些資料視覺化。按一下儲存格即可開始編輯程式碼。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "C4HZx7Gndbrh", + "outputId": "b113e0f6-8852-4d53-e054-84689232a454" + }, + "outputs": [ + { + "data": { + "text/markdown": [ + "![Sample Visualization]()" + ], + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import IPython.display as display\n", + "from matplotlib import pyplot as plt\n", + "import io\n", + "import base64\n", + "\n", + "ys = 200 + np.random.randn(100)\n", + "x = [x for x in range(len(ys))]\n", + "\n", + "fig = plt.figure(figsize=(4, 3), facecolor='w')\n", + "plt.plot(x, ys, '-')\n", + "plt.fill_between(x, ys, 195, where=(ys > 195), facecolor='g', alpha=0.6)\n", + "plt.title(\"Sample Visualization\", fontsize=10)\n", + "\n", + "data = io.BytesIO()\n", + "plt.savefig(data)\n", + "image = F\"data:image/png;base64,{base64.b64encode(data.getvalue()).decode()}\"\n", + "alt = \"Sample Visualization\"\n", + "display.display(display.Markdown(F\"\"\"![{alt}]({image})\"\"\"))\n", + "plt.close(fig)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4_kCnsPUqS6o" + }, + "source": [ + "你可從自己的 Google 雲端硬碟帳戶 (包括試算表)、GitHub 和許多其他來源,將資料匯入 Colab 筆記本中。如要進一步瞭解如何匯入資料以及將 Colab 用於數據資料學,請參閱下方「處理資料」底下的連結。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OwuxHmxllTwN" + }, + "source": [ + "
\n", + "\n", + "## 機器學習\n", + "
\n", + "\n", + "你只需要寫幾行程式碼,即可透過 Colab 匯入圖片資料集、根據圖片資料集訓練圖片分類工具並評估模型。Colab 筆記本可在 Google 的雲端伺服器上執行程式碼,也就是說,您可以充分運用 Google 硬體的強大效能 (包括 GPU 和 TPU),而不必在意自己的電腦性能如何,因為你只要使用瀏覽器就可以了。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ufxBm1yRnruN" + }, + "source": [ + "Colab 廣泛運用於機器學習社群,相關應用包括:\n", + "- 開始使用 TensorFlow\n", + "- 開發及訓練類神經網路\n", + "- 使用 TPU 進行實驗\n", + "- 推廣 AI 研究\n", + "- 建立教學課程\n", + "\n", + "如要查看示範機器學習應用程式的範例 Colab 筆記本,請參閱下方的機器學習範例。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-Rh3-Vt9Nev9" + }, + "source": [ + "
\n", + "\n", + "## 其他資源\n", + "\n", + "### 在 Colab 中使用筆記本\n", + "\n", + "
\n", + "\n", + "- [Colaboratory 總覽](/notebooks/basic_features_overview.ipynb)\n", + "- [Markdown 指南](/notebooks/markdown_guide.ipynb)\n", + "- [匯入程式庫及安裝依附元件](/notebooks/snippets/importing_libraries.ipynb)\n", + "- [儲存和載入 GitHub 中的筆記本](https://colab.research.google.com/github/googlecolab/colabtools/blob/main/notebooks/colab-github-demo.ipynb)\n", + "- [互動式表單](/notebooks/forms.ipynb)\n", + "- [互動式小工具](/notebooks/widgets.ipynb)\n", + "\n", + "
\n", + "\n", + "\n", + "### 處理資料\n", + "
\n", + "\n", + "- [載入資料:雲端硬碟、試算表及 Google Cloud Storage](/notebooks/io.ipynb)\n", + "- [圖表:將資料視覺化](/notebooks/charts.ipynb)\n", + "- [開始使用 BigQuery](/notebooks/bigquery.ipynb)\n", + "\n", + "
\n", + "\n", + "### 機器學習密集課程\n", + "\n", + "
\n", + "\n", + "以下是一些 Google 線上機器學習課程的筆記本。詳情請參閱完整的課程網站。\n", + "- [Pandas DataFrame 簡介](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/pandas_dataframe_ultraquick_tutorial.ipynb)\n", + "- [以 tf.keras 使用合成資料進行線性迴歸](https://colab.research.google.com/github/google/eng-edu/blob/main/ml/cc/exercises/linear_regression_with_synthetic_data.ipynb)\n", + "\n", + "
\n", + "\n", + "\n", + "### 使用加速硬體\n", + "
\n", + "\n", + "- [搭配 GPU 使用 TensorFlow](/notebooks/gpu.ipynb)\n", + "- [使用 TPU 的 TensorFlow](/notebooks/tpu.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P-H6Lw1vyNNd" + }, + "source": [ + "
\n", + "\n", + "\n", + "\n", + "### 主要範例\n", + "\n", + "
\n", + "\n", + "- NeMo Voice Swap:使用 Nvidia 的 NeMo 對話式 AI 工具組將音訊片段中的語音換成電腦產生的語音。\n", + "\n", + "- 重新訓練圖片分類工具:以預先訓練的圖片分類工具為基礎,建立一個分辨花朵的 Keras 模型。\n", + "- 文字分類:將 IMDB 電影評論分類為正面負面。\n", + "- 風格轉換:運用深度學習轉換圖片的風格。\n", + "- 支援多種語言的 Universal Sentence Encoder 問與答:使用機器學習模型來回答 SQuAD 資料集的問題。\n", + "- 影片畫面內插:預測影片在第一個與最後一個畫面之間的內容。\n" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install https://github.com/Isotr0py/SakuraLLM-Notebooks/releases/download/wheels/llama_cpp_python-0.2.39-cp310-cp310-manylinux_2_17_x86_64.whl" + ], + "metadata": { + "id": "GxVzvQ-03kXF", + "outputId": "28977c48-3ef2-4d16-fa8e-52674c821f09", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting llama-cpp-python==0.2.39\n", + " Downloading https://github.com/Isotr0py/SakuraLLM-Notebooks/releases/download/wheels/llama_cpp_python-0.2.39-cp310-cp310-manylinux_2_17_x86_64.whl (15.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.1/15.1 MB\u001b[0m \u001b[31m28.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python==0.2.39) (4.10.0)\n", + "Requirement already satisfied: numpy>=1.20.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python==0.2.39) (1.25.2)\n", + "Collecting diskcache>=5.6.1 (from llama-cpp-python==0.2.39)\n", + " Downloading diskcache-5.6.3-py3-none-any.whl (45 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.5/45.5 kB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: jinja2>=2.11.3 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python==0.2.39) (3.1.3)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2>=2.11.3->llama-cpp-python==0.2.39) (2.1.5)\n", + "Installing collected packages: diskcache, llama-cpp-python\n", + "Successfully installed diskcache-5.6.3 llama-cpp-python-0.2.39\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "repo_id = \"TheBloke/CodeLlama-7B-Instruct-GGUF\"\n", + "file_name=\"codellama-7b-instruct.Q2_K.gguf\"\n", + "\n", + "from huggingface_hub import hf_hub_download\n", + "hf_hub_download(repo_id=repo_id, filename=file_name,local_dir=\"/kaggle/working\")" + ], + "metadata": { + "id": "L8oDP-oP3o18", + "outputId": "308d055b-c2ee-4f74-9496-7ac8c4f35ff8", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 67, + "referenced_widgets": [ + "170aaac40a084f4f8794fc409c4094c7", + "aca3ba766bf843888ce6abb335707f07", + "e9572463294049dfa0428bc51851af44", + "cb27c1ef215c407da8e9c90959d17560", + "4a2f923d36a241928958c552d5535140", + "af001d0fb6594ccea5029fda79124c51", + "2cc5d1eeb3dc4c67a19c20afa4997fa0", + "4f6e435fa1cd4a209af3132635b5414f", + "f8e4fa05285c41e0b8ee3ba27d746ce8", + "8fd4d6dfd5c64af09b1a729df75232d3", + "bd656ec2ee95401d8798e8365e8da283" + ] + } + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "codellama-7b-instruct.Q2_K.gguf: 0%| | 0.00/2.83G [00:00\", \"\", \"\", \"<0x00>\", \"<...\n", + "llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32016] = [0.000000, 0.000000, 0.000000, 0.0000...\n", + "llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32016] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n", + "llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1\n", + "llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 2\n", + "llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 0\n", + "llama_model_loader: - kv 19: general.quantization_version u32 = 2\n", + "llama_model_loader: - type f32: 65 tensors\n", + "llama_model_loader: - type q2_K: 65 tensors\n", + "llama_model_loader: - type q3_K: 160 tensors\n", + "llama_model_loader: - type q6_K: 1 tensors\n", + "llm_load_vocab: mismatch in special tokens definition ( 264/32016 vs 259/32016 ).\n", + "llm_load_print_meta: format = GGUF V2\n", + "llm_load_print_meta: arch = llama\n", + "llm_load_print_meta: vocab type = SPM\n", + "llm_load_print_meta: n_vocab = 32016\n", + "llm_load_print_meta: n_merges = 0\n", + "llm_load_print_meta: n_ctx_train = 16384\n", + "llm_load_print_meta: n_embd = 4096\n", + "llm_load_print_meta: n_head = 32\n", + "llm_load_print_meta: n_head_kv = 32\n", + "llm_load_print_meta: n_layer = 32\n", + "llm_load_print_meta: n_rot = 128\n", + "llm_load_print_meta: n_embd_head_k = 128\n", + "llm_load_print_meta: n_embd_head_v = 128\n", + "llm_load_print_meta: n_gqa = 1\n", + "llm_load_print_meta: n_embd_k_gqa = 4096\n", + "llm_load_print_meta: n_embd_v_gqa = 4096\n", + "llm_load_print_meta: f_norm_eps = 0.0e+00\n", + "llm_load_print_meta: f_norm_rms_eps = 1.0e-05\n", + "llm_load_print_meta: f_clamp_kqv = 0.0e+00\n", + "llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n", + "llm_load_print_meta: n_ff = 11008\n", + "llm_load_print_meta: n_expert = 0\n", + "llm_load_print_meta: n_expert_used = 0\n", + "llm_load_print_meta: rope scaling = linear\n", + "llm_load_print_meta: freq_base_train = 1000000.0\n", + "llm_load_print_meta: freq_scale_train = 1\n", + "llm_load_print_meta: n_yarn_orig_ctx = 16384\n", + "llm_load_print_meta: rope_finetuned = unknown\n", + "llm_load_print_meta: model type = 7B\n", + "llm_load_print_meta: model ftype = Q2_K - Medium\n", + "llm_load_print_meta: model params = 6.74 B\n", + "llm_load_print_meta: model size = 2.63 GiB (3.35 BPW) \n", + "llm_load_print_meta: general.name = codellama_codellama-7b-instruct-hf\n", + "llm_load_print_meta: BOS token = 1 ''\n", + "llm_load_print_meta: EOS token = 2 ''\n", + "llm_load_print_meta: UNK token = 0 ''\n", + "llm_load_print_meta: LF token = 13 '<0x0A>'\n", + "llm_load_tensors: ggml ctx size = 0.22 MiB\n", + "llm_load_tensors: offloading 32 repeating layers to GPU\n", + "llm_load_tensors: offloading non-repeating layers to GPU\n", + "llm_load_tensors: offloaded 33/33 layers to GPU\n", + "llm_load_tensors: CPU buffer size = 41.04 MiB\n", + "llm_load_tensors: CUDA0 buffer size = 2653.36 MiB\n", + ".................................................................................................\n", + "llama_new_context_with_model: n_ctx = 3584\n", + "llama_new_context_with_model: freq_base = 1000000.0\n", + "llama_new_context_with_model: freq_scale = 1\n", + "llama_kv_cache_init: CUDA0 KV buffer size = 1792.00 MiB\n", + "llama_new_context_with_model: KV self size = 1792.00 MiB, K (f16): 896.00 MiB, V (f16): 896.00 MiB\n", + "llama_new_context_with_model: CUDA_Host input buffer size = 15.28 MiB\n", + "llama_new_context_with_model: CUDA0 compute buffer size = 285.43 MiB\n", + "llama_new_context_with_model: CUDA_Host compute buffer size = 8.95 MiB\n", + "llama_new_context_with_model: graph splits (measure): 3\n", + "AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | \n", + "Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.rope.freq_base': '1000000.000000', 'llama.context_length': '16384', 'general.name': 'codellama_codellama-7b-instruct-hf', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '11008', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.dimension_count': '128', 'tokenizer.ggml.bos_token_id': '1', 'llama.attention.head_count': '32', 'llama.block_count': '32', 'llama.attention.head_count_kv': '32', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '10'}\n", + "\n", + "llama_print_timings: load time = 457.00 ms\n", + "llama_print_timings: sample time = 20.80 ms / 32 runs ( 0.65 ms per token, 1538.46 tokens per second)\n", + "llama_print_timings: prompt eval time = 456.45 ms / 21 tokens ( 21.74 ms per token, 46.01 tokens per second)\n", + "llama_print_timings: eval time = 904.17 ms / 31 runs ( 29.17 ms per token, 34.29 tokens per second)\n", + "llama_print_timings: total time = 1511.20 ms / 52 tokens\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Q: python如何用time计算开始结束时间 A: 可以使用time模块,调用clock_gettime获取开始时间,然后在函数中调用clock\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install 'llama-cpp-python[server]'\n" + ], + "metadata": { + "id": "e0hpTiqX32aU", + "outputId": "2b9e2b0d-4fa7-4771-accf-64b392929429", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: llama-cpp-python[server] in /usr/local/lib/python3.10/dist-packages (0.2.39)\n", + "Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python[server]) (4.10.0)\n", + "Requirement already satisfied: numpy>=1.20.0 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python[server]) (1.25.2)\n", + "Requirement already satisfied: diskcache>=5.6.1 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python[server]) (5.6.3)\n", + "Requirement already satisfied: jinja2>=2.11.3 in /usr/local/lib/python3.10/dist-packages (from llama-cpp-python[server]) (3.1.3)\n", + "Collecting uvicorn>=0.22.0 (from llama-cpp-python[server])\n", + " Downloading uvicorn-0.28.0-py3-none-any.whl (60 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.6/60.6 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting fastapi>=0.100.0 (from llama-cpp-python[server])\n", + " Downloading fastapi-0.110.0-py3-none-any.whl (92 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.1/92.1 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pydantic-settings>=2.0.1 (from llama-cpp-python[server])\n", + " Downloading pydantic_settings-2.2.1-py3-none-any.whl (13 kB)\n", + "Collecting sse-starlette>=1.6.1 (from llama-cpp-python[server])\n", + " Downloading sse_starlette-2.0.0-py3-none-any.whl (9.0 kB)\n", + "Collecting starlette-context<0.4,>=0.3.6 (from llama-cpp-python[server])\n", + " Downloading starlette_context-0.3.6-py3-none-any.whl (12 kB)\n", + "Requirement already satisfied: pydantic!=1.8,!=1.8.1,!=2.0.0,!=2.0.1,!=2.1.0,<3.0.0,>=1.7.4 in /usr/local/lib/python3.10/dist-packages (from fastapi>=0.100.0->llama-cpp-python[server]) (2.6.4)\n", + "Collecting starlette<0.37.0,>=0.36.3 (from fastapi>=0.100.0->llama-cpp-python[server])\n", + " Downloading starlette-0.36.3-py3-none-any.whl (71 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.5/71.5 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2>=2.11.3->llama-cpp-python[server]) (2.1.5)\n", + "Collecting python-dotenv>=0.21.0 (from pydantic-settings>=2.0.1->llama-cpp-python[server])\n", + " Downloading python_dotenv-1.0.1-py3-none-any.whl (19 kB)\n", + "Requirement already satisfied: anyio in /usr/local/lib/python3.10/dist-packages (from sse-starlette>=1.6.1->llama-cpp-python[server]) (3.7.1)\n", + "Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.22.0->llama-cpp-python[server]) (8.1.7)\n", + "Collecting h11>=0.8 (from uvicorn>=0.22.0->llama-cpp-python[server])\n", + " Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic!=1.8,!=1.8.1,!=2.0.0,!=2.0.1,!=2.1.0,<3.0.0,>=1.7.4->fastapi>=0.100.0->llama-cpp-python[server]) (0.6.0)\n", + "Requirement already satisfied: pydantic-core==2.16.3 in /usr/local/lib/python3.10/dist-packages (from pydantic!=1.8,!=1.8.1,!=2.0.0,!=2.0.1,!=2.1.0,<3.0.0,>=1.7.4->fastapi>=0.100.0->llama-cpp-python[server]) (2.16.3)\n", + "Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-packages (from anyio->sse-starlette>=1.6.1->llama-cpp-python[server]) (3.6)\n", + "Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio->sse-starlette>=1.6.1->llama-cpp-python[server]) (1.3.1)\n", + "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio->sse-starlette>=1.6.1->llama-cpp-python[server]) (1.2.0)\n", + "Installing collected packages: python-dotenv, h11, uvicorn, starlette, starlette-context, sse-starlette, pydantic-settings, fastapi\n", + "Successfully installed fastapi-0.110.0 h11-0.14.0 pydantic-settings-2.2.1 python-dotenv-1.0.1 sse-starlette-2.0.0 starlette-0.36.3 starlette-context-0.3.6 uvicorn-0.28.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from google.colab.output import eval_js\n", + "print(eval_js(\"google.colab.kernel.proxyPort(5000)\"))\n", + "!python3 -m llama_cpp.server --host 0.0.0.0 --port 5000 --model /kaggle/working/codellama-7b-instruct.Q2_K.gguf" + ], + "metadata": { + "id": "Kx881xqt35Vw", + "outputId": "42938059-487e-45e9-c8f9-ae381bf70cc3", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + } + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "https://id91m21m2t-496ff2e9c6d22116-5000-colab.googleusercontent.com/\n", + "ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no\n", + "ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes\n", + "ggml_init_cublas: found 1 CUDA devices:\n", + " Device 0: Tesla T4, compute capability 7.5, VMM: yes\n", + "llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from /kaggle/working/codellama-7b-instruct.Q2_K.gguf (version GGUF V2)\n", + "llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", + "llama_model_loader: - kv 0: general.architecture str = llama\n", + "llama_model_loader: - kv 1: general.name str = codellama_codellama-7b-instruct-hf\n", + "llama_model_loader: - kv 2: llama.context_length u32 = 16384\n", + "llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n", + "llama_model_loader: - kv 4: llama.block_count u32 = 32\n", + "llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008\n", + "llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n", + "llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n", + "llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32\n", + "llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010\n", + "llama_model_loader: - kv 10: llama.rope.freq_base f32 = 1000000.000000\n", + "llama_model_loader: - kv 11: general.file_type u32 = 10\n", + "llama_model_loader: - kv 12: tokenizer.ggml.model str = llama\n", + "llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32016] = [\"\", \"\", \"\", \"<0x00>\", \"<...\n", + "llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32016] = [0.000000, 0.000000, 0.000000, 0.0000...\n", + "llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32016] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n", + "llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1\n", + "llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 2\n", + "llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 0\n", + "llama_model_loader: - kv 19: general.quantization_version u32 = 2\n", + "llama_model_loader: - type f32: 65 tensors\n", + "llama_model_loader: - type q2_K: 65 tensors\n", + "llama_model_loader: - type q3_K: 160 tensors\n", + "llama_model_loader: - type q6_K: 1 tensors\n", + "llm_load_vocab: mismatch in special tokens definition ( 264/32016 vs 259/32016 ).\n", + "llm_load_print_meta: format = GGUF V2\n", + "llm_load_print_meta: arch = llama\n", + "llm_load_print_meta: vocab type = SPM\n", + "llm_load_print_meta: n_vocab = 32016\n", + "llm_load_print_meta: n_merges = 0\n", + "llm_load_print_meta: n_ctx_train = 16384\n", + "llm_load_print_meta: n_embd = 4096\n", + "llm_load_print_meta: n_head = 32\n", + "llm_load_print_meta: n_head_kv = 32\n", + "llm_load_print_meta: n_layer = 32\n", + "llm_load_print_meta: n_rot = 128\n", + "llm_load_print_meta: n_embd_head_k = 128\n", + "llm_load_print_meta: n_embd_head_v = 128\n", + "llm_load_print_meta: n_gqa = 1\n", + "llm_load_print_meta: n_embd_k_gqa = 4096\n", + "llm_load_print_meta: n_embd_v_gqa = 4096\n", + "llm_load_print_meta: f_norm_eps = 0.0e+00\n", + "llm_load_print_meta: f_norm_rms_eps = 1.0e-05\n", + "llm_load_print_meta: f_clamp_kqv = 0.0e+00\n", + "llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n", + "llm_load_print_meta: n_ff = 11008\n", + "llm_load_print_meta: n_expert = 0\n", + "llm_load_print_meta: n_expert_used = 0\n", + "llm_load_print_meta: rope scaling = linear\n", + "llm_load_print_meta: freq_base_train = 1000000.0\n", + "llm_load_print_meta: freq_scale_train = 1\n", + "llm_load_print_meta: n_yarn_orig_ctx = 16384\n", + "llm_load_print_meta: rope_finetuned = unknown\n", + "llm_load_print_meta: model type = 7B\n", + "llm_load_print_meta: model ftype = Q2_K - Medium\n", + "llm_load_print_meta: model params = 6.74 B\n", + "llm_load_print_meta: model size = 2.63 GiB (3.35 BPW) \n", + "llm_load_print_meta: general.name = codellama_codellama-7b-instruct-hf\n", + "llm_load_print_meta: BOS token = 1 ''\n", + "llm_load_print_meta: EOS token = 2 ''\n", + "llm_load_print_meta: UNK token = 0 ''\n", + "llm_load_print_meta: LF token = 13 '<0x0A>'\n", + "llm_load_tensors: ggml ctx size = 0.11 MiB\n", + "llm_load_tensors: offloading 0 repeating layers to GPU\n", + "llm_load_tensors: offloaded 0/33 layers to GPU\n", + "llm_load_tensors: CPU buffer size = 2694.39 MiB\n", + "warning: failed to mlock 43773952-byte buffer (after previously locking 0 bytes): Cannot allocate memory\n", + "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n", + ".................................................................................................\n", + "llama_new_context_with_model: n_ctx = 2048\n", + "llama_new_context_with_model: freq_base = 1000000.0\n", + "llama_new_context_with_model: freq_scale = 1\n", + "llama_kv_cache_init: CUDA_Host KV buffer size = 1024.00 MiB\n", + "llama_new_context_with_model: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB\n", + "llama_new_context_with_model: CUDA_Host input buffer size = 12.01 MiB\n", + "llama_new_context_with_model: CUDA_Host compute buffer size = 167.20 MiB\n", + "llama_new_context_with_model: graph splits (measure): 1\n", + "AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | \n", + "Model metadata: {'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.rope.freq_base': '1000000.000000', 'llama.context_length': '16384', 'general.name': 'codellama_codellama-7b-instruct-hf', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '11008', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.dimension_count': '128', 'tokenizer.ggml.bos_token_id': '1', 'llama.attention.head_count': '32', 'llama.block_count': '32', 'llama.attention.head_count_kv': '32', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '10'}\n", + "\u001b[32mINFO\u001b[0m: Started server process [\u001b[36m12857\u001b[0m]\n", + "\u001b[32mINFO\u001b[0m: Waiting for application startup.\n", + "\u001b[32mINFO\u001b[0m: Application startup complete.\n", + "\u001b[32mINFO\u001b[0m: Uvicorn running on \u001b[1mhttp://0.0.0.0:5000\u001b[0m (Press CTRL+C to quit)\n", + "\u001b[32mINFO\u001b[0m: 127.0.0.1:51698 - \"\u001b[1mGET /docs HTTP/1.1\u001b[0m\" \u001b[32m200 OK\u001b[0m\n", + "\u001b[32mINFO\u001b[0m: 127.0.0.1:52900 - \"\u001b[1mGET /openapi.json HTTP/1.1\u001b[0m\" \u001b[32m200 OK\u001b[0m\n", + "\u001b[32mINFO\u001b[0m: 127.0.0.1:44572 - \"\u001b[1mGET /v1/models HTTP/1.1\u001b[0m\" \u001b[32m200 OK\u001b[0m\n", + "\u001b[32mINFO\u001b[0m: 127.0.0.1:44584 - \"\u001b[1mGET /favicon.ico HTTP/1.1\u001b[0m\" \u001b[31m404 Not Found\u001b[0m\n", + "\u001b[32mINFO\u001b[0m: Shutting down\n", + "\u001b[32mINFO\u001b[0m: Finished server process [\u001b[36m12857\u001b[0m]\n", + "\u001b[31mERROR\u001b[0m: Traceback (most recent call last):\n", + " File \"/usr/local/lib/python3.10/dist-packages/starlette/routing.py\", line 743, in lifespan\n", + " await receive()\n", + " File \"/usr/local/lib/python3.10/dist-packages/uvicorn/lifespan/on.py\", line 137, in receive\n", + " return await self.receive_queue.get()\n", + " File \"/usr/lib/python3.10/asyncio/queues.py\", line 159, in get\n", + " await getter\n", + "asyncio.exceptions.CancelledError\n", + "\n" + ] + } + ] + } + ], + "metadata": { + "colab": { + "name": "歡迎使用 Colaboratory", + "provenance": [], + "gpuType": "T4", + "include_colab_link": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "170aaac40a084f4f8794fc409c4094c7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_aca3ba766bf843888ce6abb335707f07", + "IPY_MODEL_e9572463294049dfa0428bc51851af44", + "IPY_MODEL_cb27c1ef215c407da8e9c90959d17560" + ], + "layout": "IPY_MODEL_4a2f923d36a241928958c552d5535140" + } + }, + "aca3ba766bf843888ce6abb335707f07": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_af001d0fb6594ccea5029fda79124c51", + "placeholder": "​", + "style": "IPY_MODEL_2cc5d1eeb3dc4c67a19c20afa4997fa0", + "value": "codellama-7b-instruct.Q2_K.gguf: 100%" + } + }, + "e9572463294049dfa0428bc51851af44": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4f6e435fa1cd4a209af3132635b5414f", + "max": 2826016448, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f8e4fa05285c41e0b8ee3ba27d746ce8", + "value": 2826016448 + } + }, + "cb27c1ef215c407da8e9c90959d17560": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8fd4d6dfd5c64af09b1a729df75232d3", + "placeholder": "​", + "style": "IPY_MODEL_bd656ec2ee95401d8798e8365e8da283", + "value": " 2.83G/2.83G [00:19<00:00, 131MB/s]" + } + }, + "4a2f923d36a241928958c552d5535140": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "af001d0fb6594ccea5029fda79124c51": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2cc5d1eeb3dc4c67a19c20afa4997fa0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4f6e435fa1cd4a209af3132635b5414f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f8e4fa05285c41e0b8ee3ba27d746ce8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8fd4d6dfd5c64af09b1a729df75232d3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bd656ec2ee95401d8798e8365e8da283": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file