Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 04a862e

Browse filesBrowse files
Updated README
1 parent dc2d4fa commit 04a862e
Copy full SHA for 04a862e

File tree

Expand file treeCollapse file tree

1 file changed

+6
-9
lines changed
Filter options
Expand file treeCollapse file tree

1 file changed

+6
-9
lines changed

‎README.md

Copy file name to clipboardExpand all lines: README.md
+6-9Lines changed: 6 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -657,18 +657,15 @@ To utilise the cross-encoder, you follow the below code instructions:
657657
data_path1 = llama_cpp.nlLoader()
658658

659659
# Load LlamaCpp GGUF embeddings model and parse in the searchQuery function with the scored passages to generate embeddings
660-
username = os.getenv("USERNAME")
661-
print("")
662-
try:
663-
llm_embed = Llama(
664-
model_path=f"C:\\Users\\{username}\\Models\\mxbai\\mxbai-embed-large-v1.Q4_K_M.gguf",
665-
embedding=True,
660+
llm_embed = Llama(
661+
model_path=f"<PATH TO YOUR GGUF EMBEDDINGS MODEL>",
662+
embedding=True,
666663
)
667664
# Store each document in a vector embedding database
668-
for i, d in enumerate(llama_cpp.searchQuery(
669-
question=question
665+
for i, d in enumerate(llama_cpp.searchQuery(
666+
question=question
670667
)):
671-
response = llm_embed.create_embedding(
668+
response = llm_embed.create_embedding(
672669
input=d
673670
)
674671
embedding = response["data"][0]["embedding"]

0 commit comments

Comments
0 (0)
Morty Proxy This is a proxified and sanitized view of the page, visit original site.