Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Wulingtian/yolov5_tensorrt_int8_tools

Open more actions menu

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

环境配置

ubuntu:18.04

cuda:11.0

cudnn:8.0

tensorrt:7.2.16

OpenCV:3.4.2

cuda,cudnn,tensorrt和OpenCV安装包(编译好了,也可以自己从官网下载编译)可以从链接: https://pan.baidu.com/s/1dpMRyzLivnBAca2c_DIgGw 密码: 0rct

cuda安装

如果系统有安装驱动,运行如下命令卸载

sudo apt-get purge nvidia*

禁用nouveau,运行如下命令

sudo vim /etc/modprobe.d/blacklist.conf

在末尾添加

blacklist nouveau

然后执行

sudo update-initramfs -u

chmod +x cuda_11.0.2_450.51.05_linux.run

sudo ./cuda_11.0.2_450.51.05_linux.run

是否接受协议: accept

然后选择Install

最后回车

vim ~/.bashrc 添加如下内容:

export PATH=/usr/local/cuda-11.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH

source .bashrc 激活环境

cudnn 安装

tar -xzvf cudnn-11.0-linux-x64-v8.0.4.30.tgz

cd cuda/include

sudo cp *.h /usr/local/cuda-11.0/include

cd cuda/lib64

sudo cp libcudnn* /usr/local/cuda-11.0/lib64

tensorrt及OpenCV安装

定位到用户根目录

tar -xzvf TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz

cd TensorRT-7.2.1.6/python,该目录有4个python版本的tensorrt安装包

sudo pip3 install tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl(根据自己的python版本安装)

pip install pycuda 安装python版本的cuda

定位到用户根目录

tar -xzvf opencv-3.4.2.zip 以备推理调用

yolov5s模型转换onnx

pip install onnx

pip install onnx-simplifier

git clone https://github.com/ultralytics/yolov5.git

cd yolov5/models

vim common.py

把BottleneckCSP类下的激活函数替换为relu,tensorrt对leakyRelu int8量化不稳定(这是一个深坑,大家记得避开)即修改为self.act = nn.ReLU(inplace=True)

训练得到模型后

cd yolov5

python models/export.py --weights 训练得到的模型权重路径 --img-size 训练图片输入尺寸

python3 -m onnxsim onnx模型名称 yolov5s-simple.onnx 得到最终简化后的onnx模型

onnx模型转换为 int8 tensorrt引擎

git clone https://github.com/Wulingtian/yolov5_tensorrt_int8_tools.git(求star)

cd yolov5_tensorrt_int8_tools

vim convert_trt_quant.py 修改如下参数

BATCH_SIZE 模型量化一次输入多少张图片

BATCH 模型量化次数

height width 输入图片宽和高

CALIB_IMG_DIR 训练图片路径,用于量化

onnx_model_path onnx模型路径

python convert_trt_quant.py 量化后的模型存到models_save目录下

tensorrt模型推理

git clone https://github.com/Wulingtian/yolov5_tensorrt_int8.git(求star)

cd yolov5_tensorrt_int8

vim CMakeLists.txt

修改USER_DIR参数为自己的用户根目录

vim http://yolov5s_infer.cc 修改如下参数

output_name1 output_name2 output_name3 yolov5模型有3个输出

我们可以通过netron查看模型输出名

pip install netron 安装netron

vim netron_yolov5s.py 把如下内容粘贴

    import netron

    netron.start('此处填充简化后的onnx模型路径', port=3344)

python netron_yolov5s.py 即可查看 模型输出名

trt_model_path 量化的的tensorrt推理引擎(models_save目录下trt后缀的文件)

test_img 测试图片路径

INPUT_W INPUT_H 输入图片宽高

NUM_CLASS 训练的模型有多少类

NMS_THRESH nms阈值

CONF_THRESH 置信度

参数配置完毕

mkdir build

cd build

cmake ..

make

./YoloV5sEngine 输出平均推理时间,以及保存预测图片到当前目录下,至此,部署完成!

About

tensorrt int8 量化yolov5 onnx模型

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.