Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Vladkryvoruchko/PSPNet-Keras-tensorflow

Open more actions menu

Repository files navigation

Keras implementation of PSPNet(caffe)

Implemented Architecture of Pyramid Scene Parsing Network in Keras.

For the best compability please use Python3.5

Setup

  1. Install dependencies:
    • Tensorflow (-gpu)
    • Keras
    • numpy
    • scipy
    • pycaffe(PSPNet)(optional for converting the weights)
    pip install -r requirements.txt --upgrade
  2. Converted trained weights are needed to run the network. Weights(in .h5 .json format) have to be downloaded and placed into directory weights/keras

Already converted weights can be downloaded here:

Convert weights by yourself(optional)

(Note: this is not required if you use .h5/.json weights)

Running this needs the compiled original PSPNet caffe code and pycaffe.

python weight_converter.py <path to .prototxt> <path to .caffemodel>

Usage:

python pspnet.py -m <model> -i <input_image>  -o <output_path>
python pspnet.py -m pspnet101_cityscapes -i example_images/cityscapes.png -o example_results/cityscapes.jpg
python pspnet.py -m pspnet101_voc2012 -i example_images/pascal_voc.jpg -o example_results/pascal_voc.jpg

List of arguments:

 -m --model        - which model to use: 'pspnet50_ade20k', 'pspnet101_cityscapes', 'pspnet101_voc2012'
    --id           - (int) GPU Device id. Default 0
 -s --sliding      - Use sliding window
 -f --flip         - Additional prediction of flipped image
 -ms --multi_scale - Predict on multiscale images

Keras results:

Original New New New

Original New New New

Original New New New

Implementation details

  • The interpolation layer is implemented as custom layer "Interp"
  • Forward step takes about ~1 sec on single image
  • Memory usage can be optimized with:
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.3 
    sess = tf.Session(config=config)
  • ndimage.zoom can take a long time

About

TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 8

Languages

Morty Proxy This is a proxified and sanitized view of the page, visit original site.